Mostrar el registro sencillo del ítem

dc.contributor.author
Leonarduzzi, Roberto Fabio  
dc.contributor.author
Torres, Maria Eugenia  
dc.contributor.author
Abry, Patrice  
dc.date.available
2019-10-08T21:23:39Z  
dc.date.issued
2014-12  
dc.identifier.citation
Leonarduzzi, Roberto Fabio; Torres, Maria Eugenia; Abry, Patrice; Scaling range automated selection for wavelet leader multifractal analysis; Elsevier Science; Signal Processing; 105; 12-2014; 243-257  
dc.identifier.issn
0165-1684  
dc.identifier.uri
http://hdl.handle.net/11336/85412  
dc.description.abstract
Scale invariance and multifractal analysis constitute paradigms nowadays widely used for real-world data characterization. In essence, they amount to assuming power law behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The exponents of these power laws, the scaling exponents, are then measured and involved in classical signal processing tasks. Yet, the practical estimation of such exponents implies the selection of a range of scales where the power law behaviors hold, a difficult task with yet crucial impact on performance. In the present contribution, a nonparametric bootstrap based procedure is devised to achieve scaling range automated selection. It is shown to be effective and relevant in practice. Its performance, benefits and computational costs are assessed by means of Monte Carlo simulations. It is applied to synthetic multifractal processes and shown to yield robust and accurate estimation of multifractal parameters, despite various difficulties such as noise corruption or inter-subject variability. Finally, its potential is illustrated at work for the analysis of adult heart rate variability on a large database.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTOMATED SCALING RANGE SELECTION  
dc.subject
BOOTSTRAP  
dc.subject
MULTIFRACTAL ANALYSIS  
dc.subject
WAVELET LEADERS  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Scaling range automated selection for wavelet leader multifractal analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-08T12:07:43Z  
dc.journal.volume
105  
dc.journal.pagination
243-257  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Leonarduzzi, Roberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; Argentina  
dc.description.fil
Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; Argentina  
dc.description.fil
Fil: Abry, Patrice. Centre National de la Recherche Scientifique; Francia  
dc.journal.title
Signal Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168414002680  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.sigpro.2014.06.002