Mostrar el registro sencillo del ítem
dc.contributor.author
Leonarduzzi, Roberto Fabio
dc.contributor.author
Torres, Maria Eugenia
dc.contributor.author
Abry, Patrice
dc.date.available
2019-10-08T21:23:39Z
dc.date.issued
2014-12
dc.identifier.citation
Leonarduzzi, Roberto Fabio; Torres, Maria Eugenia; Abry, Patrice; Scaling range automated selection for wavelet leader multifractal analysis; Elsevier Science; Signal Processing; 105; 12-2014; 243-257
dc.identifier.issn
0165-1684
dc.identifier.uri
http://hdl.handle.net/11336/85412
dc.description.abstract
Scale invariance and multifractal analysis constitute paradigms nowadays widely used for real-world data characterization. In essence, they amount to assuming power law behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The exponents of these power laws, the scaling exponents, are then measured and involved in classical signal processing tasks. Yet, the practical estimation of such exponents implies the selection of a range of scales where the power law behaviors hold, a difficult task with yet crucial impact on performance. In the present contribution, a nonparametric bootstrap based procedure is devised to achieve scaling range automated selection. It is shown to be effective and relevant in practice. Its performance, benefits and computational costs are assessed by means of Monte Carlo simulations. It is applied to synthetic multifractal processes and shown to yield robust and accurate estimation of multifractal parameters, despite various difficulties such as noise corruption or inter-subject variability. Finally, its potential is illustrated at work for the analysis of adult heart rate variability on a large database.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTOMATED SCALING RANGE SELECTION
dc.subject
BOOTSTRAP
dc.subject
MULTIFRACTAL ANALYSIS
dc.subject
WAVELET LEADERS
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Scaling range automated selection for wavelet leader multifractal analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-08T12:07:43Z
dc.journal.volume
105
dc.journal.pagination
243-257
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Leonarduzzi, Roberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; Argentina
dc.description.fil
Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; Argentina
dc.description.fil
Fil: Abry, Patrice. Centre National de la Recherche Scientifique; Francia
dc.journal.title
Signal Processing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168414002680
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.sigpro.2014.06.002
Archivos asociados