Mostrar el registro sencillo del ítem

dc.contributor.author
Hernandez, Carlos  
dc.contributor.author
Medone, Paula  
dc.contributor.author
Castillo-Chavez, Carlos  
dc.contributor.author
Rabinovich, Jorge Eduardo  
dc.date.available
2019-10-08T21:05:26Z  
dc.date.issued
2019-01  
dc.identifier.citation
Hernandez, Carlos; Medone, Paula; Castillo-Chavez, Carlos; Rabinovich, Jorge Eduardo; Building matrix population models when individuals are non-identifiable; Academic Press Ltd - Elsevier Science Ltd; Journal of Theoretical Biology; 460; 1-2019; 13-17  
dc.identifier.issn
0022-5193  
dc.identifier.uri
http://hdl.handle.net/11336/85401  
dc.description.abstract
Matrix Population Models (MPM) are among the most widely used tools in ecology and evolution. These models consider the life cycle of an individual as composed by states to construct a matrix containing the likelihood of transitions between these states as well as sexual and/or asexual per-capita offspring contributions. When individuals are identifiable one can parametrize an MPM based on survival and fertility data and average development times for every state, but some of this information is absent or incomplete for non-cohort data, or for cohort data when individuals are not identifiable. Here we introduce a simple procedure for the parameterization of an MPM that can be used with cohort data when individuals are non-identifiable; among other aspects our procedure is a novelty in that it does not require information on stage development (or stage residence) times, which current procedures require to be estimated externally, and it is a frequent source of error. We exemplify the procedure with a laboratory cohort dataset from Eratyrus mucronatus (Reduviidae, Triatominae). We also show that even if individuals are identifiable and the duration of each stage is externally estimated with no error, our procedure is simpler to use and yields the same MPM parameter estimates.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LIFE-HISTORY TRAITS  
dc.subject
MATRIX MODELS  
dc.subject
NON-COHORT DATA  
dc.subject
NON-IDENTIFIABLE INDIVIDUALS  
dc.subject
PARAMETER ESTIMATION  
dc.subject
STATE-FREQUENCY DATA  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Building matrix population models when individuals are non-identifiable  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-07-24T18:34:50Z  
dc.journal.volume
460  
dc.journal.pagination
13-17  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Hernandez, Carlos. Universidad de Colima; México. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Medone, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina  
dc.description.fil
Fil: Castillo-Chavez, Carlos. Arizona State University; Estados Unidos. Universidad de los Andes; Colombia  
dc.description.fil
Fil: Rabinovich, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina  
dc.journal.title
Journal of Theoretical Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022519318304843  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jtbi.2018.10.014