Artículo
Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor
Rómoli, Santiago
; Serrano, Mario Emanuel
; Rossomando, Francisco Guido
; Vega, Jorge Ruben
; Ortiz, Oscar; Scaglia, Gustavo Juan Eduardo
Fecha de publicación:
07/2017
Editorial:
Hindawi Publishing Corporation
Revista:
Complexity
ISSN:
1076-2787
e-ISSN:
1099-0526
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF) neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i) time-varying parameters, (ii) uncertain nonlinearities, and (iii) unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN JUAN)
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Citación
Rómoli, Santiago; Serrano, Mario Emanuel; Rossomando, Francisco Guido; Vega, Jorge Ruben; Ortiz, Oscar; et al.; Neural network-based state estimation for a closed-loop control strategy applied to a fed-batch bioreactor; Hindawi Publishing Corporation; Complexity; 2017; 7-2017; 1-16; 9391879
Compartir
Altmétricas