Artículo
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture
Fecha de publicación:
10/2014
Editorial:
International Press Boston
Revista:
Journal of Differential Geometry
ISSN:
0022-040X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We bring new insights into the longstanding Alekseevskii conjecture, namely that any connected homogeneous Einstein manifold of negative scalar curvature is diffeomorphic to a Euclidean space, by proving structural results which are actually valid for any homogeneous expanding Ricci soliton, and generalize many well-known results on Einstein solvmanifolds, solvsolitons, and nilsolitons. We obtain that any homogeneous expanding Ricci soliton M=G/KM=G/K is diffeomorphic to a product U/K×NU/K×N, where UU is a maximal reductive Lie subgroup of GG and NN is the maximal nilpotent normal subgroup of GG, such that the metric restricted to NN is a nilsoliton. Moreover, strong compatibility conditions between the metric and the action of UU on NN by conjugation must hold, including a nice formula for the Ricci operator of the metric restricted to U/KU/K. Our main tools come from geometric invariant theory. As an application, we give many Lie theoretical characterizations of algebraic solitons, as well as a proof of the fact that the following a priori much stronger result is actually equivalent to Alekseevskii’s conjecture: Any expanding algebraic soliton is diffeomorphic to a Euclidean space.
Palabras clave:
Ricci Solitons
,
Homogeneous Manifolds
,
Alekseevskii Conjecture
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lafuente, Ramiro Augusto; Lauret, Jorge Ruben; Structure of homogeneous Ricci solitons and the Alekseevskii conjecture; International Press Boston; Journal of Differential Geometry; 98; 2; 10-2014; 315-347
Compartir