Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Structure of homogeneous Ricci solitons and the Alekseevskii conjecture

Lafuente, Ramiro AugustoIcon ; Lauret, Jorge RubenIcon
Fecha de publicación: 10/2014
Editorial: International Press Boston
Revista: Journal of Differential Geometry
ISSN: 0022-040X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We bring new insights into the longstanding Alekseevskii conjecture, namely that any connected homogeneous Einstein manifold of negative scalar curvature is diffeomorphic to a Euclidean space, by proving structural results which are actually valid for any homogeneous expanding Ricci soliton, and generalize many well-known results on Einstein solvmanifolds, solvsolitons, and nilsolitons. We obtain that any homogeneous expanding Ricci soliton M=G/KM=G/K is diffeomorphic to a product U/K×NU/K×N, where UU is a maximal reductive Lie subgroup of GG and NN is the maximal nilpotent normal subgroup of GG, such that the metric restricted to NN is a nilsoliton. Moreover, strong compatibility conditions between the metric and the action of UU on NN by conjugation must hold, including a nice formula for the Ricci operator of the metric restricted to U/KU/K. Our main tools come from geometric invariant theory. As an application, we give many Lie theoretical characterizations of algebraic solitons, as well as a proof of the fact that the following a priori much stronger result is actually equivalent to Alekseevskii’s conjecture: Any expanding algebraic soliton is diffeomorphic to a Euclidean space.
Palabras clave: Ricci Solitons , Homogeneous Manifolds , Alekseevskii Conjecture
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 293.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/8500
URL: http://projecteuclid.org/euclid.jdg/1406552252
URL: https://arxiv.org/abs/1212.6511v2
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lafuente, Ramiro Augusto; Lauret, Jorge Ruben; Structure of homogeneous Ricci solitons and the Alekseevskii conjecture; International Press Boston; Journal of Differential Geometry; 98; 2; 10-2014; 315-347
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES