Mostrar el registro sencillo del ítem

dc.contributor.author
Vrech, Sonia Mariel  
dc.contributor.author
Etse, Jose Guillermo  
dc.date.available
2019-10-01T19:58:20Z  
dc.date.issued
2006-12  
dc.identifier.citation
Vrech, Sonia Mariel; Etse, Jose Guillermo; Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 22; 5; 12-2006; 943-964  
dc.identifier.issn
0749-6419  
dc.identifier.uri
http://hdl.handle.net/11336/84974  
dc.description.abstract
In this work the geometrical method for the analysis of the localization properties of the thermodynamically consistent gradient--dependent parabolic Drucker-Prager elastoplastic model is presented. From the analytical solution of the discontinuous bifurcation condition of small strain gradient-dependent elastoplasticity the elliptical envelope for localization is formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with the major principal circle of Mohr defines the type of failure (diffuse or localized) and the critical directions for discontinuous bifurcation. The results of the geometrical localization analysis illustrate the capability of the gradient--dependent elastoplastic Drucker--Prager material to suppress the discontinuous bifurcations of the related local or classical elastoplastic model formulation that take place when the adopted hardening/softening modulus H equals the critical (maximum) one for localization Hc. On the other hand, the results in this work also demonstrate that the thermodynamically consistent gradient--dependent Drucker--Prager model may lead to discontinuous bifurcation not only when the characteristic length l turns zero but also when H < Hc.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONSTITUTIVE  
dc.subject
MODEL  
dc.subject
GRADIENT  
dc.subject
ELASTOPLASTICITY  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-30T20:46:50Z  
dc.journal.volume
22  
dc.journal.number
5  
dc.journal.pagination
943-964  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina  
dc.description.fil
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina  
dc.journal.title
International Journal of Plasticity  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.ijplas.2005.07.002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0749641905001282?via%3Dihub