Mostrar el registro sencillo del ítem
dc.contributor.author
Moreira, Guilherme
dc.contributor.author
Micheloud, Gabriela Analia
dc.contributor.author
Beccaria, Alejandro José
dc.contributor.author
Goicoechea, Hector Casimiro
dc.date.available
2019-09-29T14:32:07Z
dc.date.issued
2007-07
dc.identifier.citation
Moreira, Guilherme; Micheloud, Gabriela Analia; Beccaria, Alejandro José; Goicoechea, Hector Casimiro; Optimization of the Bacillus thuringiensis var. kurstaki HD-1 δ-endotoxins production by using experimental mixture design and artificial neural networks; Elsevier Science Sa; Biochemical Engineering Journal; 35; 1; 7-2007; 48-55
dc.identifier.issn
1369-703X
dc.identifier.uri
http://hdl.handle.net/11336/84771
dc.description.abstract
An experimental mixture design coupled with data analysis by means of both response surface methodology (RSM) and artificial neural networks (ANNs) followed by multiple response optimization through a desirability function, was applied to the production of δ-endotoxins from Bacillus thuringiensis var. kurstaki. The composition of a culture medium was defined by testing three regional effluents: milky effluent, beer wastewater and sugar cane molasses. Both RSM and ANNs accomplished the goal pursued in this work, by predicting the optimal mixture of the effluents. ANNs provided more reliable results due to the complexity of the models to be fitted. The optimal selected blend was: 74%, 26% and 0%, respectively for each the above-mentioned effluents.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Sa
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bacillus thuringiensis var. kurstaki
dc.subject
Modelling
dc.subject
Mixture design
dc.subject
Artificial neural networks
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Optimization of the Bacillus thuringiensis var. kurstaki HD-1 δ-endotoxins production by using experimental mixture design and artificial neural networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-27T14:15:47Z
dc.journal.volume
35
dc.journal.number
1
dc.journal.pagination
48-55
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Moreira, Guilherme. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Micheloud, Gabriela Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
dc.description.fil
Fil: Beccaria, Alejandro José. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina
dc.journal.title
Biochemical Engineering Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.elsevier.com/locate/bej
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bej.2006.12.025
Archivos asociados