Mostrar el registro sencillo del ítem
dc.contributor.author
Cejas, María Eugenia
dc.contributor.author
Duran, Ricardo Guillermo
dc.date.available
2019-09-27T18:42:53Z
dc.date.issued
2018-06
dc.identifier.citation
Cejas, María Eugenia; Duran, Ricardo Guillermo; Weighted a priori estimates for elliptic equations; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 243; 1; 6-2018; 13-24
dc.identifier.issn
0039-3223
dc.identifier.uri
http://hdl.handle.net/11336/84701
dc.description.abstract
We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class Ap. The argument is a generalization to bounded domains of the one used in Rn to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the Ap condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local Ap class.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Polish Academy of Sciences. Institute of Mathematics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ELLIPTIC EQUATIONS
dc.subject
WEIGHTED A PRIORI ESTIMATES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Weighted a priori estimates for elliptic equations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-27T14:28:05Z
dc.journal.volume
243
dc.journal.number
1
dc.journal.pagination
13-24
dc.journal.pais
Polonia
dc.journal.ciudad
Varsovia
dc.description.fil
Fil: Cejas, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Studia Mathematica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.impan.pl/get/doi/10.4064/sm8704-6-2017
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/sm8704-6-2017
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.00879
Archivos asociados