Artículo
Wadge hardness in Scott spaces and its effectivization
Fecha de publicación:
10/2015
Editorial:
Cambridge University Press
Revista:
Mathematical Structures In Computer Science
ISSN:
0960-1295
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove some results on the Wadge order on the space of sets of natural numbers endowed with Scott topology, and more generally, on omega-continuous domains. Using alternating decreasing chains we characterize the property of Wadge hardness for the classes of the Hausdorff difference hierarchy (iterated differences of open sets). A similar characterization holds for Wadge one-to-one and finite-to-one completeness. We consider the same questions for the effectivization of the Wadge relation. We also show that for the space of sets of natural numbers endowed with the Scott topology, in each class of the Hausdorff difference hierarchy there are two strictly increasing chains of Wadge degrees of sets properly in that class. The length of these chains is the rank of the considered class, and each element in one chain is incomparable with all the elements in the other chain.
Palabras clave:
Wadge reductions
,
Scott spaces
,
Borel Hierarchy
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Becher, Veronica Andrea; Grigorieff, Serge; Wadge hardness in Scott spaces and its effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1520-1545
Compartir
Altmétricas