Artículo
Combinatorial Flexibility problems and their computational Complexity
Fecha de publicación:
02/2008
Editorial:
Elsevier
Revista:
Electronic Notes in Discrete Mathematics
ISSN:
1571-0653
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The concept of flexibility-originated in the context of heat exchanger networks-is associated with a substructure which guarantees the performance of the original structure, in a given range of possible states. We extend this concept to combinatorial optimization problems, and prove several computational complexity results in this new framework. Under some monotonicity conditions, we prove that a combinatorial optimization problem polynomially transforms to its associated flexibility problem, but that the converse need not be true. In order to obtain polynomial flexibility problems, we have to restrict ourselves to combinatorial optimization problems on matroids. We also prove that, when relaxing in different ways the matroid structure, the flexibility problems become NP-complete. This fact is shown by proving the NP-completeness of the flexibility problems associated with the Shortest Path, Minimum Cut and Weighted Matching problems.
Palabras clave:
COMBINATORIAL PROBLEMS
,
COMPUTATIONAL COMPLEXITY
,
FLEXIBILITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Aguilera, Néstor Edgardo; Leoni, Valeria Alejandra; Nasini, Graciela Leonor; Combinatorial Flexibility problems and their computational Complexity; Elsevier; Electronic Notes in Discrete Mathematics; 30; C; 2-2008; 303-308
Compartir
Altmétricas