Artículo
Calificación generalizada y convergencia óptima para métodos de regularización espectrales
Fecha de publicación:
12/2007
Editorial:
Asociación Argentina de Mecánica Computacional
Revista:
Mecánica Computacional
ISSN:
2591-3522
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
El concepto de calificación de métodos de regularización espectrales (MREs) para problemas inversos mal condicionados está fuertemente asociado con el orden de convergencia óptimo delerror de regularización (H. W. Engl et al., Regularization of inverse problems, volume 375 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht (1996); P. Mathé and S. V. Pereverzev, Inverse Problems, 19(3):789-803 (2003)). En este trabajo se extiende la definición de calificación y se introducen tres niveles diferentes de este concepto: débil, fuerte y óptimo. Se muestra que la calificación débil extiende la definición introducida por Mathé y Pereverzev en el año 2003, principalmente en el sentido que las funciones asociadas a órdenes de convergencia y conjuntos fuente no necesariamente son las mismas. Se proveen además una condición suficiente que garantiza que un MRE posee calificación en el sentido de esta generalización como así también condiciones necesarias y suficientes para que un orden de convergencia dado sea calificaci´on fuerte u óptima. Se muestra que algunos MREs que tienen calificación clásica infinita, por ejemplo expansión en valores singulares truncada, método de Landweber y método de Showalter, poseen además calificación generalizada, la cual conlleva a un orden de convergencia óptimo del error de regularización. Se presentan varios ejemplos que ilustran los niveles de calificación, las relaciones entre los mismos, como así también con el concepto de calificación clásica y el introducido por Mathé y Pereverzev. Por último, se muestran las implicaciones que tiene esta teoría en el contexto de órdenes de convergencia, resultados recíprocos y conjuntos fuente maximales para problemas inversos mal condicionados concretos.Regularization of inverse problems, volume 375 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht (1996); P. Mathé and S. V. Pereverzev, Inverse Problems, 19(3):789-803 (2003)). En este trabajo se extiende la definición de calificación y se introducen tres niveles diferentes de este concepto: débil, fuerte y óptimo. Se muestra que la calificación débil extiende la definición introducida por Mathé y Pereverzev en el año 2003, principalmente en el sentido que las funciones asociadas a órdenes de convergencia y conjuntos fuente no necesariamente son las mismas. Se proveen además una condición suficiente que garantiza que un MRE posee calificación en el sentido de esta generalización como así también condiciones necesarias y suficientes para que un orden de convergencia dado sea calificaci´on fuerte u óptima. Se muestra que algunos MREs que tienen calificación clásica infinita, por ejemplo expansión en valores singulares truncada, método de Landweber y método de Showalter, poseen además calificación generalizada, la cual conlleva a un orden de convergencia óptimo del error de regularización. Se presentan varios ejemplos que ilustran los niveles de calificación, las relaciones entre los mismos, como así también con el concepto de calificación clásica y el introducido por Mathé y Pereverzev. Por último, se muestran las implicaciones que tiene esta teoría en el contexto de órdenes de convergencia, resultados recíprocos y conjuntos fuente maximales para problemas inversos mal condicionados concretos.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Spies, Ruben Daniel; Temperini, Karina Guadalupe; Calificación generalizada y convergencia óptima para métodos de regularización espectrales; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 26; 12-2007; 2093-2105
Compartir