Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Approximating optimization problems over convex functions

Aguilera, Néstor EdgardoIcon ; Morin, PedroIcon
Fecha de publicación: 11/2008
Editorial: Springer
Revista: Numerische Mathematik
ISSN: 0029-599X
e-ISSN: 0945-3245
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

Many problems of theoretical and practical interest involve finding an optimum over a family of convex functions. For instance, finding the projection on the convex functions in $H^k(Omega)$, and some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and functions with positive semidefinite discrete Hessian need not be convex in a discrete sense. Previous work has concentrated on non-local descriptions of convexity, making the number of constraints to grow super-linearly with the number of nodes even in dimension 2, and these descriptions are very difficult to extend to higher dimensions. In this paper we propose a finite difference approximation using positive semidefinite programs and discrete Hessians, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using positive semidefinite programming codes, we show concrete examples of approximations to problems in two and three dimensions.
Palabras clave: Convex Functions , Optimization , Finite Differences
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.034Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/84142
URL: https://link.springer.com/article/10.1007%2Fs00211-008-0176-4
URL: https://arxiv.org/abs/0804.1693
DOI: https://doi.org/10.1007/s00211-008-0176-4
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Aguilera, Néstor Edgardo; Morin, Pedro; Approximating optimization problems over convex functions; Springer; Numerische Mathematik; 111; 1; 11-2008; 1-34
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES