Mostrar el registro sencillo del ítem

dc.contributor.author
Morin, Pedro  
dc.contributor.author
Siebert, Kunibert G.  
dc.contributor.author
Veeser, Andreas  
dc.date.available
2019-09-23T14:09:42Z  
dc.date.issued
2008-05  
dc.identifier.citation
Morin, Pedro; Siebert, Kunibert G.; Veeser, Andreas; A basic convergence result for conforming adaptive finite element methods; World Scientific; Mathematical Models And Methods In Applied Sciences; 18; 5; 5-2008; 707-737  
dc.identifier.issn
0218-2025  
dc.identifier.uri
http://hdl.handle.net/11336/84102  
dc.description.abstract
We consider the approximate solution with adaptive finite elements of a class of linear boundary value problems, which includes problems of "saddle point" type. For the adaptive algorithm we assume the following framework: refinement relies on unique quasi-regular element subdivisions and generates locally quasi-uniform grids, the finite element spaces are conforming, nested, and satisfy the infsup conditions, the error estimator is reliable as well as locally and discretely efficient, and marked elements are subdivided at least once. Under these assumptions, we give a sufficient and essentially necessary condition on marking for the convergence of the finite element solutions to the exact one. This condition is not only satisfied by Dörfler's strategy, but also by the maximum strategy and the equidistribution strategy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
World Scientific  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Adaptivity  
dc.subject
Conforming Finite Elements  
dc.subject
Adaptivity  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A basic convergence result for conforming adaptive finite element methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-20T14:17:41Z  
dc.journal.volume
18  
dc.journal.number
5  
dc.journal.pagination
707-737  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Siebert, Kunibert G.. Universität Augsburg;  
dc.description.fil
Fil: Veeser, Andreas. Università degli Studi di Milano; Italia  
dc.journal.title
Mathematical Models And Methods In Applied Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0218202508002838