Mostrar el registro sencillo del ítem
dc.contributor.author
Morin, Pedro
dc.contributor.author
Siebert, Kunibert G.
dc.contributor.author
Veeser, Andreas
dc.date.available
2019-09-23T14:09:42Z
dc.date.issued
2008-05
dc.identifier.citation
Morin, Pedro; Siebert, Kunibert G.; Veeser, Andreas; A basic convergence result for conforming adaptive finite element methods; World Scientific; Mathematical Models And Methods In Applied Sciences; 18; 5; 5-2008; 707-737
dc.identifier.issn
0218-2025
dc.identifier.uri
http://hdl.handle.net/11336/84102
dc.description.abstract
We consider the approximate solution with adaptive finite elements of a class of linear boundary value problems, which includes problems of "saddle point" type. For the adaptive algorithm we assume the following framework: refinement relies on unique quasi-regular element subdivisions and generates locally quasi-uniform grids, the finite element spaces are conforming, nested, and satisfy the infsup conditions, the error estimator is reliable as well as locally and discretely efficient, and marked elements are subdivided at least once. Under these assumptions, we give a sufficient and essentially necessary condition on marking for the convergence of the finite element solutions to the exact one. This condition is not only satisfied by Dörfler's strategy, but also by the maximum strategy and the equidistribution strategy.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
World Scientific
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Adaptivity
dc.subject
Conforming Finite Elements
dc.subject
Adaptivity
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A basic convergence result for conforming adaptive finite element methods
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-20T14:17:41Z
dc.journal.volume
18
dc.journal.number
5
dc.journal.pagination
707-737
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Siebert, Kunibert G.. Universität Augsburg;
dc.description.fil
Fil: Veeser, Andreas. Università degli Studi di Milano; Italia
dc.journal.title
Mathematical Models And Methods In Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0218202508002838
Archivos asociados