Mostrar el registro sencillo del ítem

dc.contributor.author
Pfeiffer, R. M.  
dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
Bura, Efstathia  
dc.date.available
2019-09-23T13:27:44Z  
dc.date.issued
2012  
dc.identifier.citation
Pfeiffer, R. M.; Forzani, Liliana Maria; Bura, Efstathia; Sufficient dimension reduction for longitudinally measured predictors; John Wiley & Sons Ltd; Statistics In Medicine; 31; 22; 2012; 2414-2427  
dc.identifier.issn
0277-6715  
dc.identifier.uri
http://hdl.handle.net/11336/84090  
dc.description.abstract
We propose a method to combine several predictors (markers) that are measured repeatedly over time into a composite marker score without assuming a model and only requiring a mild condition on the predictor distribution. Assuming that the first and second moments of the predictors can be decomposed into a time and a marker component via a Kronecker product structure that accommodates the longitudinal nature of the predictors, we develop first-moment sufficient dimension reduction techniques to replace the original markers with linear transformations that contain sufficient information for the regression of the predictors on the outcome. These linear combinations can then be combined into a score that has better predictive performance than a score built under a general model that ignores the longitudinal structure of the data. Our methods can be applied to either continuous or categorical outcome measures. In simulations, we focus on binary outcomes and show that our method outperforms existing alternatives by using the AUC, the area under the receiver?operator characteristics (ROC) curve, as a summary measure of the discriminatory ability of a single continuous diagnostic marker for binary disease outcomes. Published 2011. This article is a US Government work and is in the public domain in the USA.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Auc  
dc.subject
Discrimination  
dc.subject
Kronecker Product  
dc.subject
Sliced Inverse Regression (Sir)  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sufficient dimension reduction for longitudinally measured predictors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-20T14:16:01Z  
dc.journal.volume
31  
dc.journal.number
22  
dc.journal.pagination
2414-2427  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
LOndres  
dc.description.fil
Fil: Pfeiffer, R. M.. National Cancer Institute; Estados Unidos  
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Bura, Efstathia. George Washington University/department Of Statistics; Estados Unidos  
dc.journal.title
Statistics In Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/sim.4437/abstract  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/sim.4437/abstract  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794228/