Artículo
The rho-variation as an operator between maximal operators and singular integrals
Crescimbeni, Raquel Liliana; Macias, Roberto Aristobulo
; Menarguez, Teresa; Torrea, Jose Luis; Viviani, Beatriz Eleonora
Fecha de publicación:
03/2009
Editorial:
Birkhauser Verlag Ag
Revista:
Journal Of Evolution Equations
ISSN:
1424-3199
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The ρ-variation and the oscillation of the heat and Poisson semigroups of the Laplacian and Hermite operators (i.e. Δ and −Δ + |x|2) are proved to be bounded from Lp(Rn w(x)dx) into itself (fromL1(Rn w(x)dx) into weak-L1(Rn w(x)dx) in the case p = 1) for 1 ≤ p < ∞ and w being a weight in the Muckenhoupt?s Ap class. In the case p = ∞ it is proved that these operators do not map L∞ into itself. Even more, they map L∞ into BMO but the range of the image is strictly smaller that the range of a general singular integral operator.
Palabras clave:
Heat
,
Oscillation
,
Poisson
,
Variation
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Crescimbeni, Raquel Liliana; Macias, Roberto Aristobulo; Menarguez, Teresa; Torrea, Jose Luis; Viviani, Beatriz Eleonora; The rho-variation as an operator between maximal operators and singular integrals; Birkhauser Verlag Ag; Journal Of Evolution Equations; 9; 1; 3-2009; 81-102
Compartir
Altmétricas