Artículo
A sharp weighted transplantation theorem for Laguerre function expansions
Garrigós, G.; Harboure, Eleonor Ofelia
; Signes, T.; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora
Fecha de publicación:
03/2007
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Functional Analysis
ISSN:
0022-1236
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We find the sharp range of boundedness for transplantation operators associated with Laguerre function expansions in Lp spaces with power weights. Namely, the operators interchanging {Lkα} and {Lkβ} are bounded in Lp (yδ p) if and only if - frac(ρ, 2) - frac(1, p) < δ < 1 - frac(1, p) + frac(ρ, 2), where ρ = min {α, β}. This improves a previous partial result by Stempak and Trebels, which was only sharp for ρ ≤ 0. Our approach is based on new multiplier estimates for Hermite expansions, weighted inequalities for local singular integrals and a careful analysis of Kanjin's original proof of the unweighted case. As a consequence we obtain new results on multipliers, Riesz transforms and g-functions for Laguerre expansions in Lp (yδ p).
Palabras clave:
Laguerre Function
,
Weighted Inequalities
,
Transplantation Theorem
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Garrigós, G.; Harboure, Eleonor Ofelia; Signes, T.; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora; A sharp weighted transplantation theorem for Laguerre function expansions; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 244; 1; 3-2007; 247-276
Compartir
Altmétricas