Mostrar el registro sencillo del ítem
dc.contributor.author
Spies, Ruben Daniel
dc.contributor.author
Temperini, Karina Guadalupe
dc.date.available
2019-09-22T14:33:18Z
dc.date.issued
2006-04
dc.identifier.citation
Spies, Ruben Daniel; Temperini, Karina Guadalupe; Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems; IOP Publishing; Inverse Problems; 22; 2; 4-2006; 611-626
dc.identifier.issn
0266-5611
dc.identifier.uri
http://hdl.handle.net/11336/84067
dc.description.abstract
A standard engineering procedure for approximating the solutions of an infinite-dimensional inverse problem of the form Ax = y, where A is a given compact linear operator on a Hilbert space X and y is the given data, is to find a sequence {XN} of finite-dimensional approximating subspaces of X whose union is dense in X and to construct the sequence {xN} of least-squares solutions of the problem in X N. In 1980, Seidman showed that if the problem is ill-posed, then, without any additional assumptions on the exact solution or on the sequence of approximating subspaces XN, it cannot be guaranteed that the sequence {xN} will converge to the exact solution. In this paper, this result is extended in the following sense: it is shown that if X is separable, then for any y ∈ X, y ≠ 0 and for any arbitrarily given function there exists an injective, compact linear operator A and an increasing sequence of finite-dimensional subspaces XN ⊂ X such that for all, where xN is the least-squares solution of Ax = y in XN. © 2006 IOP Publishing Ltd.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Arbitrary Divergence
dc.subject
Least-Squares Method
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-20T14:17:18Z
dc.journal.volume
22
dc.journal.number
2
dc.journal.pagination
611-626
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral; Argentina
dc.journal.title
Inverse Problems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/0266-5611/22/2/014
Archivos asociados