Artículo
Likelihood-Based Sufficient Dimension Reduction
Fecha de publicación:
03/2009
Editorial:
American Statistical Association
Revista:
Journal of The American Statistical Association
ISSN:
0162-1459
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We obtain the maximum likelihood estimator of the central subspace under conditional normality of the predictors given the response. Analytically and in simulations we found that our new estimator can preform much better than sliced inverse regression, sliced average variance estimation and directional regression, and that it seems quite robust to deviations from normality.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Cook, R. Dennis; Forzani, Liliana Maria; Likelihood-Based Sufficient Dimension Reduction; American Statistical Association; Journal of The American Statistical Association; 104; 485; 3-2009; 197-208
Compartir
Altmétricas