Mostrar el registro sencillo del ítem
dc.contributor.author
Carena, Marilina
dc.date.available
2019-09-22T14:18:04Z
dc.date.issued
2009-12
dc.identifier.citation
Carena, Marilina; Weak type (1,1) of maximal operators on metric measure spaces; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 50; 1; 12-2009; 145-159
dc.identifier.issn
0041-6932
dc.identifier.uri
http://hdl.handle.net/11336/84064
dc.description.abstract
A discretization method for the study of the weak type (1,1) for the maximal of a sequence of convolution operators on R^n has been introduced by Miguel de Guzmán and Teresa Carrillo, by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the non-atomic case we obtain as a corollary that any of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Unión Matemática Argentina
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Maximal Operator
dc.subject
Weak Type (1,1)
dc.subject
Dirac Delta
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Weak type (1,1) of maximal operators on metric measure spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-20T14:17:39Z
dc.identifier.eissn
1669-9637
dc.journal.volume
50
dc.journal.number
1
dc.journal.pagination
145-159
dc.journal.pais
Argentina
dc.journal.ciudad
Bahía Blanca
dc.description.fil
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Revista de la Unión Matemática Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v50n1/v50n1a12.pdf
Archivos asociados