Mostrar el registro sencillo del ítem

dc.contributor.author
Carena, Marilina  
dc.date.available
2019-09-22T14:18:04Z  
dc.date.issued
2009-12  
dc.identifier.citation
Carena, Marilina; Weak type (1,1) of maximal operators on metric measure spaces; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 50; 1; 12-2009; 145-159  
dc.identifier.issn
0041-6932  
dc.identifier.uri
http://hdl.handle.net/11336/84064  
dc.description.abstract
A discretization method for the study of the weak type (1,1) for the maximal  of a sequence of convolution operators on  R^n has been introduced by Miguel de Guzmán and Teresa Carrillo,  by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in  "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed  such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated  to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the  non-atomic case we obtain as a corollary that any  of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Unión Matemática Argentina  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Maximal Operator  
dc.subject
Weak Type (1,1)  
dc.subject
Dirac Delta  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Weak type (1,1) of maximal operators on metric measure spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-20T14:17:39Z  
dc.identifier.eissn
1669-9637  
dc.journal.volume
50  
dc.journal.number
1  
dc.journal.pagination
145-159  
dc.journal.pais
Argentina  
dc.journal.ciudad
Bahía Blanca  
dc.description.fil
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Revista de la Unión Matemática Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v50n1/v50n1a12.pdf