Artículo
Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type
Fecha de publicación:
12/2005
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We obtain a comparison of the level sets for two maximal functions on a space of homogeneous type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601-628]. As applications to the theory of Ap weights on this setting, we compare the standard and the dyadic Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities.
Palabras clave:
CalderÓN-Zygmund
,
Maximal Functions
,
Spaces of Homogeneous Type
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Aimar, Hugo Alejandro; Bernardis, Ana Luci; Iaffei, Bibiana Raquel; Comparison of Hardy-Littlewood and dyadic maximal functions on spaces of homogeneous type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 312; 1; 12-2005; 105-120
Compartir
Altmétricas