Mostrar el registro sencillo del ítem
dc.contributor.author
Syafiie, S.
dc.contributor.author
Tadeo, F.
dc.contributor.author
Martínez, Ernesto Carlos
dc.date.available
2019-09-18T13:27:53Z
dc.date.issued
2007-12
dc.identifier.citation
Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Learning to Control pH Processes at Multiple Time Scales; The Berkeley Electronic Press; Chemical Product and Process Modeling; 2; 1; 12-2007; 1-7
dc.identifier.issn
1934-2659
dc.identifier.uri
http://hdl.handle.net/11336/83824
dc.description.abstract
This article presents a solution to pH control based on model-free learning control (MFLC). The MFLC technique is proposed because the algorithm gives a general solution for acid-base systems, yet is simple enough for implementation in existing control hardware. MFLC is based on reinforcement learning (RL), which is learning by direct interaction with the environment. The MFLC algorithm is model free and satisfying incremental control, input and output constraints. A novel solution of MFLC using multi-step actions (MSA) is presented: actions on multiple time scales consist of several identical primitive actions. This solves the problem of determining a suitable fixed time scale to select control actions so as to trade off accuracy in control against learning complexity. An application of MFLC to a pH process at laboratory scale is presented, showing that the proposed MFLC learns to control adequately the neutralization process, and maintain the process in the goal band. Also, the MFLC controller smoothly manipulates the control signal.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
The Berkeley Electronic Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Ph Control
dc.subject
Learning Control
dc.subject
Reinforcement Learning
dc.subject
Wastewater Treatment
dc.subject.classification
Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Learning to Control pH Processes at Multiple Time Scales
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-17T13:51:23Z
dc.journal.volume
2
dc.journal.number
1
dc.journal.pagination
1-7
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Berkeley, USA
dc.description.fil
Fil: Syafiie, S.. Universidad de Valladolid; España
dc.description.fil
Fil: Tadeo, F.. Universidad de Valladolid; España
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Chemical Product and Process Modeling
Archivos asociados