Mostrar el registro sencillo del ítem
dc.contributor.author
Kim, Manuela Leticia
dc.contributor.author
Stripeikis, Jorge Daniel
dc.contributor.author
Tudino, Mabel Beatriz
dc.date.available
2019-09-17T21:43:21Z
dc.date.issued
2009-06
dc.identifier.citation
Kim, Manuela Leticia; Stripeikis, Jorge Daniel; Tudino, Mabel Beatriz; Flow injection solid phase extraction electrothermal atomic absorption spectrometry for the determination of Cr(VI) by selective separation and preconcentration on a lab-made hybrid mesoporous solid microcolumn; Pergamon-Elsevier Science Ltd; Spectrochimica Acta Part B: Atomic Spectroscopy; 64; 6; 6-2009; 500-505
dc.identifier.issn
0584-8547
dc.identifier.uri
http://hdl.handle.net/11336/83779
dc.description.abstract
A lab-made hybrid mesoporous solid was employed in a flow injection solid phase extraction electrothermal atomic absorption spectrometric (FI-SPE-ETAAS) system for the selective retention of Cr(VI). The solid was prepared by co-condensation of sodium tetraethylortosilicate and 3-aminopropyltriethoxysilane by sol-gel methodology and one-pot synthesis and characterized by Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, and scanning electronic microscopy. Adsorption capacities at different pH values of both, Cr(VI) and Cr(III), were also measured in order to obtain the optimum retention for Cr(VI) with no interference of Cr(III). The maximum capacity of adsorption (4.35 mmol g- 1) was observed for pH values between 2-3, whilst Cr(III) was found to remain in solution (adsorption capacity = 0.007 mmol g- 1). Then, a microcolumn (bed volume: 7.9 μL) was filled with the solid and inserted in the FI-ETAAS system for analytical purposes. Since the analyte was strongly retained by the filling in the anionic form, 0.1 mol L- 1 hydroxylammonium chloride in 1 mol L- 1 hydrochloric acid was selected as eluent due to its redox characteristics. In this way, the sorbed Cr(VI) was easily released in the cationic form. The enrichment factor (EF) was found as a compromise between sensitivity and sample throughput and a value of 27 was obtained under optimized conditions: pH 2, sample loading 2 mL min- 1 (60 s), elution flow rate 0.5 ml min- 1 (eluent volume: 75 μL). Under optimized conditions the limit of detection for Cr(VI) was 1.2 ng L- 1, the precision, expressed as RSD was 2.5%, the sample throughput 21/h, and the microcolumn lifetime was over 300 adsorption/desorption cycles. Cr(III) determination was also performed by simply measuring its concentration at the end of the column and after Cr(VI) retention by the mesoporous solid. Applications of the methodology to the determination of Cr(VI) in deionized, osmosis, mineral, effluent and river waters showed very good results. Validation was performed by means of recovery studies as no certified materials were available for Cr(VI). Total chromium determinations, obtained by the sum of Cr(III) and Cr(VI) concentrations, were validated using NIST, SRM 1643e certificate reference material (Trace Element in Natural Water).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Cr(Iii)
dc.subject
Cr(Vi)
dc.subject
Fi-Spe-Etaas
dc.subject
Hybrid Mesoporous Silica
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Flow injection solid phase extraction electrothermal atomic absorption spectrometry for the determination of Cr(VI) by selective separation and preconcentration on a lab-made hybrid mesoporous solid microcolumn
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-03-27T17:54:24Z
dc.journal.volume
64
dc.journal.number
6
dc.journal.pagination
500-505
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Kim, Manuela Leticia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Stripeikis, Jorge Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
dc.description.fil
Fil: Tudino, Mabel Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
dc.journal.title
Spectrochimica Acta Part B: Atomic Spectroscopy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.sab.2009.01.006
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0584854709000196
Archivos asociados