Mostrar el registro sencillo del ítem
dc.contributor.author
Mroginski, Maria Andrea
dc.contributor.author
Von Stetten, David
dc.contributor.author
Velazquez Escobar, Francisco
dc.contributor.author
Strauss, Holger M.
dc.contributor.author
Kaminski, Steve
dc.contributor.author
Scheerer, Patrick
dc.contributor.author
Günther, Mina
dc.contributor.author
Murgida, Daniel Horacio

dc.contributor.author
Schmieder, Peter
dc.contributor.author
Bongards, Christian
dc.contributor.author
Gärtner, Wolfgang
dc.contributor.author
Mailliet, Jo
dc.contributor.author
Hughes, Jon
dc.contributor.author
Essen, Lars Oliver
dc.contributor.author
Hildebrandt, Peter
dc.date.available
2019-09-17T21:37:28Z
dc.date.issued
2009-12
dc.identifier.citation
Mroginski, Maria Andrea; Von Stetten, David; Velazquez Escobar, Francisco; Strauss, Holger M.; Kaminski, Steve; et al.; Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: Reconciling structural and spectroscopic data by QM/MM calculations; Elsevier; Biophysical Journal; 96; 10; 12-2009; 4153-4163
dc.identifier.issn
0006-3495
dc.identifier.uri
http://hdl.handle.net/11336/83776
dc.description.abstract
A quantum mechanics (QM)/molecular mechanics (MM) hybrid method was applied to the Pr state of the cyanobacterial phytochrome Cph1 to calculate the Raman spectra of the bound PCB cofactor. Two QM/MM models were derived from the atomic coordinates of the crystal structure. The models differed in the protonation site of His260 in the chromophore-binding pocket such that either the δ-nitrogen (M-HSD) or the ε-nitrogen (M-HSE) carried a hydrogen. The optimized structures of the two models display small differences specifically in the orientation of His260 with respect to the PCB cofactor and the hydrogen bond network at the cofactor-binding site. For both models, the calculated Raman spectra of the cofactor reveal a good overall agreement with the experimental resonance Raman (RR) spectra obtained from Cph1 in the crystalline state and in solution, including Cph1 adducts with isotopically labeled PCB. However, a distinctly better reproduction of important details in the experimental spectra is provided by the M-HSD model, which therefore may represent an improved structure of the cofactor site. Thus, QM/MM calculations of chromoproteins may allow for refining crystal structure models in the chromophore-binding pocket guided by the comparison with experimental RR spectra. Analysis of the calculated and experimental spectra also allowed us to identify and assign the modes that sensitively respond to chromophore-protein interactions. The most pronounced effect was noted for the stretching mode of the methine bridge A-B adjacent to the covalent attachment site of PCB. Due a distinct narrowing of the A-B methine bridge bond angle, this mode undergoes a large frequency upshift as compared with the spectrum obtained by QM calculations for the chromophore in vacuo. This protein-induced distortion of the PCB geometry is the main origin of a previous erroneous interpretation of the RR spectra based on QM calculations of the isolated cofactor.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Fitocromos
dc.subject
Fotoceptores Biológicos
dc.subject
Dft
dc.subject
Raman
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: Reconciling structural and spectroscopic data by QM/MM calculations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-03-27T17:54:05Z
dc.journal.volume
96
dc.journal.number
10
dc.journal.pagination
4153-4163
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Mroginski, Maria Andrea. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Von Stetten, David. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Velazquez Escobar, Francisco. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Strauss, Holger M.. Leibniz-Institut für Molekulare Pharmakologie; Alemania
dc.description.fil
Fil: Kaminski, Steve. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Scheerer, Patrick. Universitätsmedizin Berlin; Alemania
dc.description.fil
Fil: Günther, Mina. Technishe Universitat Berlin; Alemania
dc.description.fil
Fil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
dc.description.fil
Fil: Schmieder, Peter. Leibniz-Institut für Molekulare Pharmakologie; Alemania
dc.description.fil
Fil: Bongards, Christian. Max-Planck-Institut für Bioanorganische Chemie; Alemania
dc.description.fil
Fil: Gärtner, Wolfgang. Max-Planck-Institut für Bioanorganische Chemie; Alemania
dc.description.fil
Fil: Mailliet, Jo. Justus-Liebig University Gießen; Alemania
dc.description.fil
Fil: Hughes, Jon. Justus-Liebig University Gießen; Alemania
dc.description.fil
Fil: Essen, Lars Oliver. Philipps University Marburg; Alemania
dc.description.fil
Fil: Hildebrandt, Peter. Technishe Universitat Berlin; Alemania
dc.journal.title
Biophysical Journal

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0006349509005876
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.bpj.2009.02.029
Archivos asociados