Mostrar el registro sencillo del ítem

dc.contributor.author
Syafiie, S.  
dc.contributor.author
Tadeo, F.  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2019-09-17T19:23:15Z  
dc.date.issued
2007-09  
dc.identifier.citation
Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Model-free learning control of neutralization processes using reinforcement learning; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 20; 6; 9-2007; 767-782  
dc.identifier.issn
0952-1976  
dc.identifier.uri
http://hdl.handle.net/11336/83738  
dc.description.abstract
The pH process dynamic often exhibits severe nonlinear and time-varying behavior and therefore cannot be adequately controlled with a conventional PI control. This article discusses an alternative approach to pH process control using model-free learning control (MFLC), which is based on reinforcement learning algorithms. The MFLC control technique is proposed because this algorithm gives a general solution for acid-base systems, yet is simple enough to be implemented in existing control hardware without a model. Reinforcement learning is selected because it is a learning technique based on interaction with a dynamic system or process for which a goal-seeking control task must be performed. This "on-the-fly" learning is suitable for time varying or nonlinear processes for which the development of a model is too costly, time consuming or even not feasible. Results obtained in a laboratory plant show that MFLC gives good performance for pH process control. Also, control actions generated by MFLC are much smoother than conventional PID controller.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Learning Control  
dc.subject
Reinforcement Learning  
dc.subject
Ph Control  
dc.subject
Model-Free Control  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Model-free learning control of neutralization processes using reinforcement learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-17T13:51:26Z  
dc.journal.volume
20  
dc.journal.number
6  
dc.journal.pagination
767-782  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Syafiie, S.. Universidad de Valladolid; España  
dc.description.fil
Fil: Tadeo, F.. Universidad de Valladolid; España  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Engineering Applications Of Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2006.10.009