Mostrar el registro sencillo del ítem

dc.contributor.author
Rodríguez, Silvio David  
dc.contributor.author
Barletta, Diego A.  
dc.contributor.author
Wilderjans, Tom F.  
dc.contributor.author
Bernik, Delia Leticia  
dc.date.available
2019-09-16T20:59:58Z  
dc.date.issued
2014-10  
dc.identifier.citation
Rodríguez, Silvio David; Barletta, Diego A.; Wilderjans, Tom F.; Bernik, Delia Leticia; Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection; Springer; Food Analytical Methods; 7; 10; 10-2014; 2042-2050  
dc.identifier.issn
1936-9751  
dc.identifier.uri
http://hdl.handle.net/11336/83675  
dc.description.abstract
The objective of this work is to report the improvements obtained in the discrimination of complex aroma samples with subtle differences in odor pattern, by the use of a fast procedure suitable for the cases of measurements in the field demanding decision-making in real time using a portable electronic nose. This device consists of a sensor array which records changes in conductivity as a function of time when aroma molecules reach the sensors. The core of the method consists of applying unfolded cluster analysis to selected time windows (UCATW) within the temporal evolution of the aroma profile recorded by the gas sensors, yielding an efficient, fast, and reliable data analysis tool that is easy to perform for electronic nose users. The performance of this data handling was tested in two case studies of food adulteration. The results demonstrated that this methodology enables to discriminate highly similar samples, herewith reducing the probability of achieving a wrong grouping due to the use of flawed data. The automation of this type of analysis is simple and improves the efficiency of the device significantly, herewith reducing the time of sensor’s signal recording that is necessary for a reliable assessment of the studied system. The results were validated by clustering the sample component scores that are obtained by applying parallel factor analysis (PARAFAC) to the original three-dimensional data array. An additional validation was obtained by means of a leave-one-out resampling procedure.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Aroma Discrimination  
dc.subject
Electronic Nose  
dc.subject
Food Quality Assessment  
dc.subject
Time-Window Selection  
dc.subject
Unfolded Cluster Analysis  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-11T19:43:31Z  
dc.journal.volume
7  
dc.journal.number
10  
dc.journal.pagination
2042-2050  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Barletta, Diego A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Wilderjans, Tom F.. Katholieke Universiteit Leuve; Bélgica  
dc.description.fil
Fil: Bernik, Delia Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.journal.title
Food Analytical Methods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12161-014-9841-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s12161-014-9841-7