Mostrar el registro sencillo del ítem

dc.contributor.author
Ponzoni, Ignacio  
dc.contributor.author
Azuaje, Francisco J.  
dc.contributor.author
Augusto, Juan C.  
dc.contributor.author
Glass, David H.  
dc.date.available
2019-09-13T19:38:59Z  
dc.date.issued
2007-10-12  
dc.identifier.citation
Ponzoni, Ignacio; Azuaje, Francisco J.; Augusto, Juan C.; Glass, David H.; Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 4; 4; 12-10-2007; 624-633  
dc.identifier.issn
1545-5963  
dc.identifier.uri
http://hdl.handle.net/11336/83582  
dc.description.abstract
There is a need to design computational methods to support the prediction of gene regulatory networks (GRNs). Such models should offer both biologically meaningful and computationally accurate predictions which, in combination with other techniques, may improve large-scale integrative studies. This paper presents a new machine-learning method for the prediction of putative regulatory associations from expression data which exhibit properties never or only partially addressed by other techniques recently published. The method was tested on a Saccharomyces cerevisiae gene expression data set. The results were statistically validated and compared with the relationships inferred by two machine-learning approaches to GRN prediction. Furthermore, the resulting predictions were assessed using domain knowledge. The proposed algorithm may be able to accurately predict relevant biological associations between genes. One of the most relevant features of this new method is the prediction of adaptive regulation thresholds for the discretization of gene expression values, which is required prior to the rule association learning process. Moreover, an important advantage consists of its low computational cost to infer association rules. The proposed system may significantly support exploratory large-scale studies of automated identification of potentially relevant gene expression associations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IEEE Computer Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Combinatorial Optimization  
dc.subject
Decision Trees  
dc.subject
Gene Expression Data  
dc.subject
Genetic Regulatory Networks  
dc.subject
Machine Learning  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-11T19:34:11Z  
dc.identifier.eissn
1557-9964  
dc.journal.volume
4  
dc.journal.number
4  
dc.journal.pagination
624-633  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
California  
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Azuaje, Francisco J.. University of Ulster; Reino Unido  
dc.description.fil
Fil: Augusto, Juan C.. University of Ulster; Reino Unido  
dc.description.fil
Fil: Glass, David H.. University of Ulster; Reino Unido  
dc.journal.title
Ieee-acm Transactions On Computational Biology And Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/4359844  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/tcbb.2007.1049