Mostrar el registro sencillo del ítem
dc.contributor.author
Ponzoni, Ignacio
dc.contributor.author
Azuaje, Francisco J.
dc.contributor.author
Augusto, Juan C.
dc.contributor.author
Glass, David H.
dc.date.available
2019-09-13T19:38:59Z
dc.date.issued
2007-10-12
dc.identifier.citation
Ponzoni, Ignacio; Azuaje, Francisco J.; Augusto, Juan C.; Glass, David H.; Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 4; 4; 12-10-2007; 624-633
dc.identifier.issn
1545-5963
dc.identifier.uri
http://hdl.handle.net/11336/83582
dc.description.abstract
There is a need to design computational methods to support the prediction of gene regulatory networks (GRNs). Such models should offer both biologically meaningful and computationally accurate predictions which, in combination with other techniques, may improve large-scale integrative studies. This paper presents a new machine-learning method for the prediction of putative regulatory associations from expression data which exhibit properties never or only partially addressed by other techniques recently published. The method was tested on a Saccharomyces cerevisiae gene expression data set. The results were statistically validated and compared with the relationships inferred by two machine-learning approaches to GRN prediction. Furthermore, the resulting predictions were assessed using domain knowledge. The proposed algorithm may be able to accurately predict relevant biological associations between genes. One of the most relevant features of this new method is the prediction of adaptive regulation thresholds for the discretization of gene expression values, which is required prior to the rule association learning process. Moreover, an important advantage consists of its low computational cost to infer association rules. The proposed system may significantly support exploratory large-scale studies of automated identification of potentially relevant gene expression associations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IEEE Computer Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Combinatorial Optimization
dc.subject
Decision Trees
dc.subject
Gene Expression Data
dc.subject
Genetic Regulatory Networks
dc.subject
Machine Learning
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-06-11T19:34:11Z
dc.identifier.eissn
1557-9964
dc.journal.volume
4
dc.journal.number
4
dc.journal.pagination
624-633
dc.journal.pais
Estados Unidos
dc.journal.ciudad
California
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Azuaje, Francisco J.. University of Ulster; Reino Unido
dc.description.fil
Fil: Augusto, Juan C.. University of Ulster; Reino Unido
dc.description.fil
Fil: Glass, David H.. University of Ulster; Reino Unido
dc.journal.title
Ieee-acm Transactions On Computational Biology And Bioinformatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/4359844
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/tcbb.2007.1049
Archivos asociados