Artículo
Commutators of Singular Integrals with Kernels Satisfying Generalized Hörmander Conditions and Extrapolation Results to the Variable Exponent Spaces
Fecha de publicación:
08/2018
Editorial:
Springer
Revista:
Potential Analysis
ISSN:
0926-2601
e-ISSN:
1572-929X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We obtain boundedness results for the higher order commutators of singular integral operators between weighted Lebesgue spaces, including Lp-BMO and Lp-Lipschitz estimates. The kernels of such operators satisfy certain regularity condition, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of singular integral operators with less regular kernels satisfying a Hörmander’s type inequality. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p. Finally, by extrapolation techniques, we derive different results in the variable exponent context.
Palabras clave:
Commutators
,
Extrapolation
,
Variable Lebesgue Spaces
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Melchiori, Luciana; Pradolini, Gladis Guadalupe; Commutators of Singular Integrals with Kernels Satisfying Generalized Hörmander Conditions and Extrapolation Results to the Variable Exponent Spaces; Springer; Potential Analysis; 8-2018; 1-23
Compartir
Altmétricas