Artículo
How have daily climate extremes changed in the recent past over northeastern Argentina?
Fecha de publicación:
09/2018
Editorial:
Elsevier Science
Revista:
Global and Planetary Change
ISSN:
0921-8181
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Changes in climate extremes affect socioeconomics and natural systems in northeastern Argentina (NEA) and may increase its vulnerability leading to unprecedented disasters. This study investigates the long-term changes and interannual variability of daily temperature and precipitation climate extremes and assesses to what extent global reanalyses reproduce the observed variability in the recent past. Datasets include quality-controlled observations (1963–2013) and ERA-Interim and NCEP2 reanalyses (1979–2011). Climate extremes are characterized spatially and temporally by 15 indices proposed by the Expert Team on Climate Change Detection and Indices. The leading modes of the area-averaged index time series were obtained by means of a Singular Spectrum Analysis, while the spatial distribution of mean changes was estimated by fitting nonparametric linear trends to each index time series. The results show that temperature extremes are changing towards warmer conditions. The number of warm days has been increasing since 1990 while the number of cold days has been decreasing. Warm and cold nights show a significant signal of warming that seems to be stabilizing in recent decades. Heat waves almost double the frequency and duration of cold waves, and the duration of heat waves increased while cold spells decreased in last decades. Longer heat waves are related to longer dry spells. On the other hand, the number of frost days remained stable although they exhibit high interannual and decadal variability. As well, intense precipitation events in most of the region increased steadily since 1970. The annual maximum amount of 1-day and 5-day precipitation events increased from the 1970s to the 2000s, stabilizing in recent years. The ERA-Interim and NCEP2 reanalyses represent climate extremes with different success. ERA-Interim can recognize temperature extremes in time and space, while the older NCEP2 presents systematic positive errors and has some difficult to replicate the interannual variability of the number of summer days. Both reanalyses reproduce dry spells and the annual maximum 5-day precipitation with large biases, which are particularly noticeable at each observation station. Although reanalyses would be expected to add information for climate extremes in areas of scarce observations like northeastern Argentina, they still need to be used with great caution and only as a complement to observations, especially in studies focusing on precipitation extremes.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Lovino, Miguel Angel; Müller, Omar Vicente; Berbery, Ernesto H.; Muller, Gabriela Viviana; How have daily climate extremes changed in the recent past over northeastern Argentina?; Elsevier Science; Global and Planetary Change; 168; 9-2018; 78-97
Compartir
Altmétricas