Mostrar el registro sencillo del ítem

dc.contributor.author
Solé Casals, J.  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Zhao, Q.  
dc.contributor.author
Cichocki, A.  
dc.date.available
2019-08-28T18:52:24Z  
dc.date.issued
2018-12  
dc.identifier.citation
Solé Casals, J.; Caiafa, César Federico; Zhao, Q.; Cichocki, A.; Brain-Computer Interface with Corrupted EEG Data: a Tensor Completion Approach; Springer; Cognitive Computation; 10; 6; 12-2018; 1062-1074  
dc.identifier.issn
1866-9956  
dc.identifier.uri
http://hdl.handle.net/11336/82412  
dc.description.abstract
One of the current issues in brain-computer interface (BCI) is how to deal with noisy electroencephalography (EEG) measurements organized as multidimensional datasets (tensors). On the other hand, recently, significant advances have been made in multidimensional signal completion algorithms that exploit tensor decomposition models to capture the intricate relationship among entries in a multidimensional signal. We propose to use tensor completion applied to EEG data for improving the classification performance in a motor imagery BCI system with corrupted measurements. Noisy measurements (electrode misconnections, subject movements, etc.) are considered as unknowns (missing samples) that are inferred from a tensor decomposition model (tensor completion). We evaluate the performance of four recently proposed tensor completion algorithms, CP-WOPT (Acar et al. Chemom Intell Lab Syst. 106:41-56, 2011), 3DPB-TC (Caiafa et al. 2013), BCPF (Zhao et al. IEEE Trans Pattern Anal Mach Intell. 37(9):1751-1763, 2015), and HaLRT (Liu et al. IEEE Trans Pattern Anal Mach Intell. 35(1):208-220, 2013), plus a simple interpolation strategy, first with random missing entries and then with missing samples constrained to have a specific structure (random missing channels), which is a more realistic assumption in BCI applications. We measured the ability of these algorithms to reconstruct the tensor from observed data. Then, we tested the classification accuracy of imagined movement in a BCI experiment with missing samples. We show that for random missing entries, all tensor completion algorithms can recover missing samples increasing the classification performance compared to a simple interpolation approach. For the random missing channels case, we show that tensor completion algorithms help to reconstruct missing channels, significantly improving the accuracy in the classification of motor imagery (MI), however, not at the same level as clean data. Summarizing, compared to the interpolation case, all tensor completion algorithms succeed to increase the classification performance by 7–9% (LDA–SVD) for random missing entries and 15–8% (LDA–SVD) for random missing channels. Tensor completion algorithms are useful in real BCI applications. The proposed strategy could allow using motor imagery BCI systems even when EEG data is highly affected by missing channels and/or samples, avoiding the need of new acquisitions in the calibration stage.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Brain-Computer Interface  
dc.subject
Eeg  
dc.subject
Missing Samples  
dc.subject
Tensor Completion  
dc.subject
Tensor Decomposition  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Brain-Computer Interface with Corrupted EEG Data: a Tensor Completion Approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-08-16T16:48:30Z  
dc.journal.volume
10  
dc.journal.number
6  
dc.journal.pagination
1062-1074  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Solé Casals, J.. Universitat de Vic; España  
dc.description.fil
Fil: Caiafa, César Federico. Indiana University; Estados Unidos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Zhao, Q.. Guangdong University Of Technology; China. Riken; Japón  
dc.description.fil
Fil: Cichocki, A.. Skolkovo Institute Of Science And Technology; Rusia. Hangzhou Dianzi University; China  
dc.journal.title
Cognitive Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12559-018-9574-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12559-018-9574-9