Mostrar el registro sencillo del ítem
dc.contributor.author
Forzani, Liliana Maria
dc.contributor.author
García Arancibia, Rodrigo
dc.contributor.author
Llop Orzan, Pamela Nerina
dc.contributor.author
Tomassi, Diego Rodolfo
dc.date.available
2019-08-27T19:03:18Z
dc.date.issued
2018-09
dc.identifier.citation
Forzani, Liliana Maria; García Arancibia, Rodrigo; Llop Orzan, Pamela Nerina; Tomassi, Diego Rodolfo; Supervised dimension reduction for ordinal predictors; Elsevier Science; Computational Statistics and Data Analysis; 125; 9-2018; 136-155
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/82283
dc.description.abstract
In applications involving ordinal predictors, common approaches to reduce dimensionality are either extensions of unsupervised techniques such as principal component analysis, or variable selection procedures that rely on modeling the regression function. A supervised dimension reduction method tailored to ordered categorical predictors is introduced which uses a model-based dimension reduction approach, inspired by extending sufficient dimension reductions to the context of latent Gaussian variables. The reduction is chosen without modeling the response as a function of the predictors and does not impose any distributional assumption on the response or on the response given the predictors. A likelihood-based estimator of the reduction is derived and an iterative expectation–maximization type algorithm is proposed to alleviate the computational load and thus make the method more practical. A regularized estimator, which simultaneously achieves variable selection and dimension reduction, is also presented. Performance of the proposed method is evaluated through simulations and a real data example for socioeconomic index construction, comparing favorably to widespread use techniques.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Expectation&Ndash;Maximization (Em)
dc.subject
Latent Variables Reduction Subspace
dc.subject
Ses Index Construction
dc.subject
Supervised Classification
dc.subject
Variable Selection
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Supervised dimension reduction for ordinal predictors
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-08-08T20:35:44Z
dc.journal.volume
125
dc.journal.pagination
136-155
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Forzani, Liliana Maria. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: García Arancibia, Rodrigo. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Economía Aplicada Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Llop Orzan, Pamela Nerina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina
dc.journal.title
Computational Statistics and Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016794731830080X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.csda.2018.03.018
Archivos asociados