Mostrar el registro sencillo del ítem

dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
García Arancibia, Rodrigo  
dc.contributor.author
Llop Orzan, Pamela Nerina  
dc.contributor.author
Tomassi, Diego Rodolfo  
dc.date.available
2019-08-27T19:03:18Z  
dc.date.issued
2018-09  
dc.identifier.citation
Forzani, Liliana Maria; García Arancibia, Rodrigo; Llop Orzan, Pamela Nerina; Tomassi, Diego Rodolfo; Supervised dimension reduction for ordinal predictors; Elsevier Science; Computational Statistics and Data Analysis; 125; 9-2018; 136-155  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/82283  
dc.description.abstract
In applications involving ordinal predictors, common approaches to reduce dimensionality are either extensions of unsupervised techniques such as principal component analysis, or variable selection procedures that rely on modeling the regression function. A supervised dimension reduction method tailored to ordered categorical predictors is introduced which uses a model-based dimension reduction approach, inspired by extending sufficient dimension reductions to the context of latent Gaussian variables. The reduction is chosen without modeling the response as a function of the predictors and does not impose any distributional assumption on the response or on the response given the predictors. A likelihood-based estimator of the reduction is derived and an iterative expectation–maximization type algorithm is proposed to alleviate the computational load and thus make the method more practical. A regularized estimator, which simultaneously achieves variable selection and dimension reduction, is also presented. Performance of the proposed method is evaluated through simulations and a real data example for socioeconomic index construction, comparing favorably to widespread use techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Expectation&Ndash;Maximization (Em)  
dc.subject
Latent Variables Reduction Subspace  
dc.subject
Ses Index Construction  
dc.subject
Supervised Classification  
dc.subject
Variable Selection  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Supervised dimension reduction for ordinal predictors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-08-08T20:35:44Z  
dc.journal.volume
125  
dc.journal.pagination
136-155  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Forzani, Liliana Maria. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: García Arancibia, Rodrigo. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Economía Aplicada Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Llop Orzan, Pamela Nerina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina  
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016794731830080X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.csda.2018.03.018