Artículo
Temporal percolation of a susceptible adaptive network
Fecha de publicación:
05/2013
Editorial:
Elsevier Science
Revista:
Physica A: Statistical Mechanics And Its Applications
ISSN:
0378-4371
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the past decades, many authors have used the susceptible?infected?recovered model to study the impact of the disease spreading on the evolution of the infected individuals. However, few authors focused on the temporal unfolding of the susceptible individuals. In this paper, we study the dynamic of the susceptible-infected-recovered model in an adaptive network that mimics the transitory deactivation of permanent social contacts, such as friendship and work-ship ties. Using an edge-based compartmental model and percolation theory, we obtain the evolution equations for the fraction susceptible individuals in the susceptible biggest component. In particular, we focus on how the individual´s behavior impacts on the dilution of the susceptible network. We show that, as a consequence, the spreading of the disease slows down, protecting the biggest susceptible cluster by increasing the critical time at which the giant susceptible component is destroyed. Our theoretical results are fully supported by extensive simulations.
Palabras clave:
Epidemic Models
,
Percolation
,
Adaptive Networks
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIMAR)
Articulos de INST.DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Articulos de INST.DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Citación
Valdez, Lucas Daniel; Macri, Pablo Alejandro; Braunstein, L. A.; Temporal percolation of a susceptible adaptive network; Elsevier Science; Physica A: Statistical Mechanics And Its Applications; 392; 18; 5-2013; 4172-4180
Compartir
Altmétricas