Mostrar el registro sencillo del ítem

dc.contributor.author
Hansmann, David  
dc.contributor.author
Buceta, Ruben Carlos  
dc.date.available
2016-11-14T20:10:14Z  
dc.date.issued
2013-03  
dc.identifier.citation
Hansmann, David; Buceta, Ruben Carlos; Coarse grained approach for volume conserving models; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 14; 3-2013; 3018-3027  
dc.identifier.issn
0378-4371  
dc.identifier.uri
http://hdl.handle.net/11336/8206  
dc.description.abstract
Volume conserving surface (VCS) models without deposition and evaporation, as well as ideal molecular-beam epitaxy models, are prototypes to study the symmetries of conserved dynamics. In this work we study two similar VCS models with conserved noise, which differ from each other by the axial symmetry of their dynamic hopping rules. We use a coarse-grained approach to analyze the models and show how to determine the coefficients of their corresponding continuous stochastic differential equation (SDE) within the same universality class. The employed method makes use of small translations in a test space which contains the stationary probability density function (SPDF). In case of the symmetric model we calculate all the coarse-grained coefficients of the related conserved Kardar-Parisi-Zhang (KPZ) equation. With respect to the symmetric model, the asymmetric model adds new terms which have to be analyzed, first of all the diffusion term, whose coarse-grained coefficient can be determined by the same method. In contrast to other methods, the used formalism allows to calculate all coefficients of the SDE theoretically and within limits numerically. Above all, the used approach connects the coefficients of the SDE with the SPDF and hence gives them a precise physical meaning.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Volume Conserving Models  
dc.subject
Molecular-Beam-Epitaxy Models  
dc.subject
Conserved Kpz Equation  
dc.subject
Generalized Function  
dc.subject
Test Function Method  
dc.subject
Stochastic Differential Equation Coefficients  
dc.subject
Coarse Grained Approach  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Coarse grained approach for volume conserving models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-11-14T19:29:22Z  
dc.journal.volume
392  
dc.journal.number
14  
dc.journal.pagination
3018-3027  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Hansmann, David. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.journal.title
Physica A: Statistical Mechanics And Its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2013.03.020  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113002379  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://arxiv.org/abs/1208.5147v2