Mostrar el registro sencillo del ítem

dc.contributor.author
Broitman, E.  
dc.contributor.author
Bojorge, Claudia Daniela  
dc.contributor.author
Elhordoy, F.  
dc.contributor.author
Kent, V. R.  
dc.contributor.author
Zanini Gadioli, G.  
dc.contributor.author
Marotti, R. E.  
dc.contributor.author
Canepa, Horacio Ricardo  
dc.contributor.author
Dalchiele, E. A.  
dc.date.available
2019-08-20T18:46:50Z  
dc.date.issued
2012-12  
dc.identifier.citation
Broitman, E.; Bojorge, Claudia Daniela; Elhordoy, F.; Kent, V. R.; Zanini Gadioli, G.; et al.; Comparative study on the properties of ZnO nanowires and nanocrystalline thin films; Elsevier Science Sa; Surface and Coatings Technology; 213; 12-2012; 59-64  
dc.identifier.issn
0257-8972  
dc.identifier.uri
http://hdl.handle.net/11336/81835  
dc.description.abstract
The microstructural, morphological, optical and water-adsorption properties of nanocrystalline ZnO thin films and ZnO nanowires were studied and compared. The ZnO thin films were obtained by a sol-gel process, while the ZnO nanowires were electrochemically grown onto a ZnO sol-gel spin-coated seed layer. Thin films and nanowire samples were deposited onto crystalline quartz substrates covered by an Au electrode, able to be used in a quartz crystal microbalance. X-ray diffraction measurements reveal in both cases a typical diffraction pattern of ZnO wurtzite structure. Scanning electron microscopic images of nanowire samples show the presence of nanowires with hexagonal sections, with diameters ranging from 30 to 90. nm. Optical characterization reveals a bandgap energy of 3.29. eV for the nanowires and 3.35. eV for the thin films. A quartz crystal microbalance placed in a vacuum chamber was used to quantify the amount and kinetics of water adsorption onto the samples. Nanowire samples, which have higher surface areas than the thin films, adsorb significantly more water.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Sa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nanocrystalline Zno  
dc.subject
Sol Gel  
dc.subject
Water Adsorption  
dc.subject
Zno  
dc.subject
Zno Nanowires  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Comparative study on the properties of ZnO nanowires and nanocrystalline thin films  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-08-16T18:44:58Z  
dc.journal.volume
213  
dc.journal.pagination
59-64  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Broitman, E.. Linköping University; Suecia  
dc.description.fil
Fil: Bojorge, Claudia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina  
dc.description.fil
Fil: Elhordoy, F.. Universidad de la República; Uruguay  
dc.description.fil
Fil: Kent, V. R.. Universidad de la República; Uruguay  
dc.description.fil
Fil: Zanini Gadioli, G.. Universidade Estadual de Campinas; Brasil  
dc.description.fil
Fil: Marotti, R. E.. Universidad de la República; Uruguay  
dc.description.fil
Fil: Canepa, Horacio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina  
dc.description.fil
Fil: Dalchiele, E. A.. Universidad de la República; Uruguay  
dc.journal.title
Surface and Coatings Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.surfcoat.2012.10.015  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0257897212009590