Mostrar el registro sencillo del ítem
dc.contributor.author
Maguitman, Ana Gabriela

dc.contributor.author
Menczer, Filippo
dc.contributor.author
Erdinc, Fulya
dc.contributor.author
Roinestad, Heather
dc.contributor.author
Vespignani, Alessandro
dc.date.available
2019-08-20T14:27:41Z
dc.date.issued
2006-06-08
dc.identifier.citation
Maguitman, Ana Gabriela; Menczer, Filippo; Erdinc, Fulya; Roinestad, Heather; Vespignani, Alessandro; Algorithmic computation and approximation of semantic similarity; Springer; World Wide Web-internet And Web Information Systems; 9; 4; 8-6-2006; 431-456
dc.identifier.issn
1386-145X
dc.identifier.uri
http://hdl.handle.net/11336/81794
dc.description.abstract
Automatic extraction of semantic information from text and links in Web pages is key to improving the quality of search results. However, the assessment of automatic semantic measures is limited by the coverage of user studies, which do not scale with the size, heterogeneity, and growth of the Web. Here we propose to leverage human-generated metadata—namely topical directories—to measure semantic relationships among massive numbers of pairs of Web pages or topics. The Open Directory Project classifies millions of URLs in a topical ontology, providing a rich source from which semantic relationships between Web pages can be derived. While semantic similarity measures based on taxonomies (trees) are well studied, the design of well-founded similarity measures for objects stored in the nodes of arbitrary ontologies (graphs) is an open problem. This paper defines an information-theoretic measure of semantic similarity that exploits both the hierarchical and non-hierarchical structure of an ontology. An experimental study shows that this measure improves significantly on the traditional taxonomy-based approach. This novel measure allows us to address the general question of how text and link analyses can be combined to derive measures of relevance that are in good agreement with semantic similarity. Surprisingly, the traditional use of text similarity turns out to be ineffective for relevance ranking.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Web Mining
dc.subject
Web Search
dc.subject
Semantic Similarity
dc.subject
Content And Link Similarity
dc.subject
Ranking Evaluation
dc.subject.classification
Control Automático y Robótica

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Algorithmic computation and approximation of semantic similarity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-08-16T15:41:24Z
dc.identifier.eissn
1573-1413
dc.journal.volume
9
dc.journal.number
4
dc.journal.pagination
431-456
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Maguitman, Ana Gabriela. Indiana University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
dc.description.fil
Fil: Menczer, Filippo. Indiana University; Estados Unidos
dc.description.fil
Fil: Erdinc, Fulya. Indiana University; Estados Unidos
dc.description.fil
Fil: Roinestad, Heather. Indiana University; Estados Unidos
dc.description.fil
Fil: Vespignani, Alessandro. Indiana University; Estados Unidos
dc.journal.title
World Wide Web-internet And Web Information Systems

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11280-006-8562-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11280-006-8562-2
Archivos asociados