Mostrar el registro sencillo del ítem
dc.contributor.author
Porcasi Gomez, Ximena

dc.contributor.author
Calderón, Gladys E.
dc.contributor.author
Lamfri, Mario
dc.contributor.author
Scavuzzo, Marcelo
dc.contributor.author
Sabattini, Marta S.
dc.contributor.author
Polop, Jaime Jose

dc.date.available
2019-08-14T22:02:37Z
dc.date.issued
2005-12
dc.identifier.citation
Porcasi Gomez, Ximena; Calderón, Gladys E.; Lamfri, Mario; Scavuzzo, Marcelo; Sabattini, Marta S.; et al.; Predictive distribution maps of rdent reservoir species of zoonoses in South America; Sociedad Argentina para el Estudio de los Mamíferos; Mastozoologia Neotropical; 12; 2; 12-2005; 199-216
dc.identifier.issn
0327-9383
dc.identifier.uri
http://hdl.handle.net/11336/81622
dc.description.abstract
We model potential distribution for three species of rodents known to be reservoirs of zoonotic diseases: Calomys musculinus, Oligoryzomys flavescens and O. longicaudatus. These models provide general distribution hypotheses obtained using environmental data from record localities. Satellite remote sensing is then used to extrapolate climatic and ecological features of potentially suitable habitats for these rodents. In the three species mapped, we found high overall correspondence between predicted (based on environmental data) and specimen based distributions. The maps proposed here provide several advantages over dot and shaded outline maps. First, the predictive maps incorporate geographically explicit predictions of potential distribution into the test. Second, the validity of the predictive map can be appreciated when localities of previous records of the studied species, not used as training sites or used as control sites, are overlaid on the map. In this approach, environmental factors, criteria and analytical techniques are explicit and can be easily verified. Hence, we can temporally fit data in more precise distribution maps.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Sociedad Argentina para el Estudio de los Mamíferos
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Environmental Factors
dc.subject
Geographic Distribution
dc.subject
Rodent Reservoirs
dc.subject.classification
Zoología, Ornitología, Entomología, Etología

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Predictive distribution maps of rdent reservoir species of zoonoses in South America
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-08-07T21:07:39Z
dc.identifier.eissn
1666-0536
dc.journal.volume
12
dc.journal.number
2
dc.journal.pagination
199-216
dc.journal.pais
Argentina

dc.journal.ciudad
Puerto Madryn
dc.description.fil
Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina
dc.description.fil
Fil: Calderón, Gladys E.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud “Dr. C. G. Malbrán”; Argentina
dc.description.fil
Fil: Lamfri, Mario. Comision Nacional de Actividades Espaciales; Argentina
dc.description.fil
Fil: Scavuzzo, Marcelo. Comision Nacional de Actividades Espaciales; Argentina
dc.description.fil
Fil: Sabattini, Marta S.. Universidad Nacional de Córdoba; Argentina
dc.description.fil
Fil: Polop, Jaime Jose. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina
dc.journal.title
Mastozoologia Neotropical
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sarem.org.ar/wp-content/uploads/2012/11/SAREM_MastNeotrop_12-2_07_Porcasi.pdf
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sarem.org.ar/mastozoologia-neotropical-vol12-no2/
Archivos asociados