Mostrar el registro sencillo del ítem
dc.contributor.author
Wheeler, Jonathan
dc.contributor.author
Páez, María Augusta
dc.contributor.author
Guillén Gosálbez, Gonzalo
dc.contributor.author
Mele, Fernando Daniel
dc.date.available
2019-08-09T18:04:51Z
dc.date.issued
2018-05
dc.identifier.citation
Wheeler, Jonathan; Páez, María Augusta; Guillén Gosálbez, Gonzalo; Mele, Fernando Daniel; Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 113; 5-2018; 11-31
dc.identifier.issn
0098-1354
dc.identifier.uri
http://hdl.handle.net/11336/81327
dc.description.abstract
Multi-objective optimization (MOO) is widely applied in sustainability problems where several objectives must be accounted for in the analysis. Unfortunately, its complexity grows with the number of objectives, which hampers its practical use. In this paper, we simplify MOO problems via their combination with multi-attribute decision-making (MADM) methods. The approach identifies a unique Pareto solution of the MOO problem, which best reflects the decision-makers’ preferences, by using weighting factors generated via four well-known MADM methods: SWING, SMART, AHP and TRADE OFF. The capabilities of this approach are illustrated through its application to the design and planning of a sugar/ethanol supply chain using questionnaires filled in by academic experts in the problem. We find that the weights obtained using MADM algorithms may well differ from the ones given by standard life-cycle assessment methods employed in systems engineering problems. Overall, our approach simplifies the MOO problem by identifying solutions consistent with the decision-makers’ preferences and by providing valuable insight on how these preferences are articulated in practice.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Sustainability
dc.subject
Multi-Criteria Optimization
dc.subject
Environmental Impact
dc.subject
Biorefinery Design
dc.subject
Decision-Making
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-08-06T18:17:09Z
dc.journal.volume
113
dc.journal.pagination
11-31
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Wheeler, Jonathan. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
dc.description.fil
Fil: Páez, María Augusta. University of Manchester; Reino Unido
dc.description.fil
Fil: Guillén Gosálbez, Gonzalo. Imperial College London; Reino Unido
dc.description.fil
Fil: Mele, Fernando Daniel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
dc.journal.title
Computers and Chemical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://linkhttps://www.sciencedirect.com/science/article/pii/S0098135418300759?via%3Dihub#!inghub.elsevier.com/retrieve/pii/S0098135418300759
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.compchemeng.2018.02.010
Archivos asociados