Mostrar el registro sencillo del ítem

dc.contributor.author
Luján, Emmanuel  
dc.contributor.author
Soto, Daniela  
dc.contributor.author
Rosito, María Sol  
dc.contributor.author
Soba, Alejandro  
dc.contributor.author
Guerra, Liliana Noemi  
dc.contributor.author
Calvo, Juan Carlos  
dc.contributor.author
Marshall, Guillermo Ricardo  
dc.contributor.author
Suárez, Cecilia Ana  
dc.date.available
2019-07-31T13:54:16Z  
dc.date.issued
2018-05  
dc.identifier.citation
Luján, Emmanuel; Soto, Daniela; Rosito, María Sol; Soba, Alejandro; Guerra, Liliana Noemi; et al.; Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by: In vitro studies; Royal Society of Chemistry; Integrative Biology; 10; 5; 5-2018; 325-334  
dc.identifier.issn
1757-9694  
dc.identifier.uri
http://hdl.handle.net/11336/80640  
dc.description.abstract
Mathematical modelling approaches have become increasingly abundant in cancer research. Tumour infiltration extent and its spatial organization depend both on the tumour type and stage and on the bio-physicochemical characteristics of the microenvironment. This sets a complex scenario that often requires a multidisciplinary and individually adjusted approach. The ultimate goal of this work is to present an experimental/numerical combined method for the development of a three-dimensional mathematical model with the ability to reproduce the growth and infiltration patterns of a given avascular microtumour in response to different microenvironmental conditions. The model is based on a diffusion-convection reaction equation that considers logistic proliferation, volumetric growth, a rim of proliferative cells at the tumour surface, and invasion with diffusive and convective components. The parameter values of the model were fitted to experimental results while radial velocity and diffusion coefficients were made spatially variable in a case-specific way through the introduction of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively, according to the infiltration pattern observed. The in vitro model consists of multicellular tumour spheroids (MTSs) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel matrix with a standard culture medium ("naive" matrix) or a conditioned medium from adipocytes or preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and preadipocyte conditioned media had the ability to change the MTS infiltration pattern from collective and laminar to an individual and atomized one. Numerical simulations were able to adequately reproduce qualitatively and quantitatively both kinds of infiltration patterns, which were determined by area quantification, analysis of fractal dimensions and lacunarity, and Bland-Altman analysis. These results suggest that the combined approach presented here could be established as a new framework with interesting potential applications at both the basic and clinical levels in the oncology area.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Microtumoural Infiltration  
dc.subject
Multicellular Spheroids  
dc.subject
In Silico Models  
dc.subject
Fractals  
dc.title
Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by: In vitro studies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-07-29T14:54:13Z  
dc.journal.volume
10  
dc.journal.number
5  
dc.journal.pagination
325-334  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
CAMBRIDGE  
dc.description.fil
Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina  
dc.description.fil
Fil: Soto, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina  
dc.description.fil
Fil: Rosito, María Sol. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Soba, Alejandro. Comisión Nacional de Energía Atómica; Argentina  
dc.description.fil
Fil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina  
dc.description.fil
Fil: Calvo, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina  
dc.description.fil
Fil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.description.fil
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.journal.title
Integrative Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/c8ib00049b