Mostrar el registro sencillo del ítem
dc.contributor.author
Cendra, Hernan
dc.contributor.author
Grillo, Sergio Daniel
dc.date.available
2019-07-24T16:41:53Z
dc.date.issued
2007-05-31
dc.identifier.citation
Cendra, Hernan; Grillo, Sergio Daniel; Lagrangian systems with higher order constraints; American Institute of Physics; Journal of Mathematical Physics; 48; 5; 31-5-2007; 1-35
dc.identifier.issn
0022-2488
dc.identifier.uri
http://hdl.handle.net/11336/80159
dc.description.abstract
A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Mechanics
dc.subject
Geometry
dc.subject
Constraints
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Lagrangian systems with higher order constraints
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-07-12T16:16:40Z
dc.identifier.eissn
1089-7658
dc.journal.volume
48
dc.journal.number
5
dc.journal.pagination
1-35
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Maryland
dc.description.fil
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
dc.description.fil
Fil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
dc.journal.title
Journal of Mathematical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.2740470?journalCode=jmp
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.2740470
Archivos asociados