Mostrar el registro sencillo del ítem

dc.contributor.author
Cendra, Hernan  
dc.contributor.author
Grillo, Sergio Daniel  
dc.date.available
2019-07-24T16:41:53Z  
dc.date.issued
2007-05-31  
dc.identifier.citation
Cendra, Hernan; Grillo, Sergio Daniel; Lagrangian systems with higher order constraints; American Institute of Physics; Journal of Mathematical Physics; 48; 5; 31-5-2007; 1-35  
dc.identifier.issn
0022-2488  
dc.identifier.uri
http://hdl.handle.net/11336/80159  
dc.description.abstract
A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems GNHSs, whose constraints only involve the velocities of the system i.e., first order derivatives in the position of the system. One of the features of this kind of systems is that D’Alembert’s principle or its nonlinear higher order generalization, the Chetaev’s principle is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard’s model Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L’instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954) of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Mechanics  
dc.subject
Geometry  
dc.subject
Constraints  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lagrangian systems with higher order constraints  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-07-12T16:16:40Z  
dc.identifier.eissn
1089-7658  
dc.journal.volume
48  
dc.journal.number
5  
dc.journal.pagination
1-35  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Maryland  
dc.description.fil
Fil: Cendra, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.journal.title
Journal of Mathematical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.2740470?journalCode=jmp  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.2740470