Mostrar el registro sencillo del ítem

dc.contributor
Ponce Dawson, Silvina Martha  
dc.contributor
Ferraro, Marta Beatriz  
dc.contributor.author
Perez Ipiña, Emiliano  
dc.date.available
2019-07-18T11:26:00Z  
dc.date.issued
2015-10-22  
dc.identifier.citation
Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha; Ferraro, Marta Beatriz; Análisis y modelado de experimentos de fluorescencia. Aplicación a señales de calcio; 22-10-2015  
dc.identifier.uri
http://hdl.handle.net/11336/79780  
dc.description.abstract
En este trabajo se estudian, desde un punto de vista teórico, distintas técnicas ópticas que permiten observar in vivo procesos que ocurren en células y embriones. Todas ellas involucran la obtención de registros o imágenes de fluorescencia. Uno de los objetivos del trabajo es determinar cómo analizar los datos experimentales para extraer información cuantitativa sobre parámetros biofísicos relevantes para los fenómenos observados. En particular, se analiza cómo hacerlo cuando las moléculas observadas difunden e interactúan (reaccionan) con otras especies. En los distintos casos analizados las fluctuaciones de los registros o imágenes cumplen un rol fundamental ya que se usan para extraer información. En base al conocimiento construido a partir del estudio de las fluctuaciones en experimentos de fluorescencia, en el presente trabajo se avanza también sobre otro aspecto relevante para los procesos de señalización biológica como es el tiempo que le lleva a un mecanismo celular endógeno “sensar” la concentración de un ligando con un dado nivel de error. En la primera parte de la Tesis se hace foco en el estudio de la técnica conocida como Espectroscopía por Correlación de Fluorescencia (FCS, por su nombre en inglés). En los experimentos de FCS se obtienen registros de fluorescencia en un pequeño volumen a partir de los cuales se calcula la función de autocorrelación (ACF) de las fluctuaciones de la fluorescencia. Ajustando la ACF es posible extraer los tiempos de correlación que la caracterizan y los pesos con que entran dichos tiempos. Usando un modelo dinámico de los procesos que subyacen a las observaciones es posible pasar de los parámetros de ajuste a parámetros biofísicos. En particular, a partir de los tiempos de correlación pueden estimarse las tasas de transporte de las moléculas marcadas y, a partir de los pesos, puede obtenerse información sobre la concentración de las moléculas observadas. En el Capítulo 2 se estudia de qué modo, para un sistema de moléculas marcadas que reaccionan y difunden, los tiempos de correlación dependen de los parámetros del sistema y de los del experimento. Se muestra, en particular, cómo variando el volumen de observación los tiempos característicos pasan de estar determinados exclusivamente por los coeficientes de difusión libre de las especies involucradas a depender de coeficientes efectivos que son función de las tasas de reacción. En el Capítulo 3 se estudia la variación de la ACF dependiendo de si las moléculas marcadas interactúan con sitios móviles o inmóviles. Se observa que en el caso de sitios inmóviles hay un tiempo de correlación cuyo peso se anula lo que tiene implicancias directas sobre la estimación de concentraciones a partir de los experimentos. En este Capítulo se estudia también con qué precisión es posible estimar concentraciones dependiendo de la longitud de los registros analizados. En el Capítulo 4 se estudia la precisión de los mecanismos de “lectura” endógenos que involucran la ligadura de moléculas “efectoras” a sitios en la célula y la posterior generación de una respuesta que depende de la concentración “leída”. Se presentan, en particular, expresiones que permiten estimar el error en la concentración sensada como función del tiempo de observación y los tiempos característicos del sistema. Uno de los mayores aportes de esta parte del trabajo radica en que, a diferencia de estudios anteriores, las expresiones describen el decaimiento del error para todo el rango de tiempos de observación, no sólo en el límite asintótico. Por otro lado, incorpora una correción que tiene en cuenta la no linealidad del sistema que es relevante para tiempos tempranos cuando se estudia el comportamiento de sitios de ligadura únicos. En el trabajo se muestra cómo esta corrección “no lineal” permite interpretar la reducción en las fluctuaciones observada en experimentos realizados en embriones de la mosca Drosophila melanogaster cuando se comparan las asociadas a la producción instantánea de mRNA con las de la proteína correspondiente acumulada a lo largo del tiempo. A partir de la descripción de las fluctuaciones tempranas se presenta también en este Capítulo una estimación de la distribución de tiempos de espera entre eventos de ligadura consecutivos. La distribución obtenida permite interpretar observaciones experimentales de la actividad de enzimas a nivel de molécula única sin recurrir a modelos que suponen que la molécula fluctúa entre un sinnúmero de estados conformacionales distintos. La observación de fenómenos in vivo mediante microscopía de fluorescencia es en gran parte factible debido a que pueden manipularse los organismos en estudio para que expresen algunas proteínas de interés con una cola fluorescente. Esto permite, por ejemplo, estudiar las propiedades espacio-temporales de gradientes de proteínas involucrados en morfogénesis. Un caso analizado con gran detalle es el del desarrollo embrionaria temprano de la mosca de la fruta, Drosophila melanogaster, en particular, el del gradiente de la proteína Bicoid (Bcd) a lo largo del eje antero-posterior. En muchos trabajos se interpretan las observaciones experimentales en el marco de un modelo (SDD) en el que el Bcd es sintetizado en un extremo del embrión desde donde difunde a lo largo de éste a la vez que se degrada. El modelo SDD no logra explicar cuantitativamente las características observadas del gradiente. En el Capítulo 5 se analiza de qué modo varía la información que puede extraerse de las imágenes al tener en cuenta que Bcd no sólo difunde sino que también se liga a sitios internos y que la fluorescencia observada no distingue entre Bcd libre y Bcd ligado. Se introduce para tal fin una extensión del modelo SDD al que llamamos SDID ya que incluye la interacción con sitios de ligadura con el que se estudia tanto la dinámica espacio-temporal de la concentración de Bcd como su habilidad para actuar como factor de transcripción. El modelo logra reproducir las observaciones experimentales con parámetros biofísicos razonables y abre la puerta a una reinterpretación de la relación existente entre Bcd y la proteína Hunchback para cuya producción el Bcd es factor de transcripción. Finalmente, en el Capítulo 6 se analiza la validez y limitaciones de un modelo que describe las fluctuaciones de fluorescencia en imágenes donde se observa la distribución de Ca2+ intracelular utilizando fluoróforos que cambian su intensidad al ligar a este ión (single-wavelength Ca2+ dyes). El modelo es la base de un método que permite comparar cuantitativamente entre sí experimentos de señales de Ca2+ realizados en distintas condiciones experimentales y que ayuda, por otro lado, a identificar parámetros experimentales óptimos para cada “set-up”. El análisis detallado presentado en este Capítulo muestra que el modelo reproduce correctamente las fluctuaciones observadas aunque no siempre para un conjunto unívoco de parámetros.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Modelado de Técnicas Ópticas  
dc.subject
Análisis Fluctuaciones  
dc.subject
Sistemas de Reacción-Difusión  
dc.subject
Fluorescencia  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Análisis y modelado de experimentos de fluorescencia. Aplicación a señales de calcio  
dc.type
info:eu-repo/semantics/doctoralThesis  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:ar-repo/semantics/tesis doctoral  
dc.date.updated
2019-07-17T18:23:59Z  
dc.description.fil
Fil: Perez Ipiña, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://digital.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?a=d&c=tesis&d=Tesis_5847_PerezIpina  
dc.conicet.grado
Universitario de posgrado/doctorado  
dc.conicet.titulo
Doctor en Ciencias Físicas  
dc.conicet.rol
Autor  
dc.conicet.rol
Director  
dc.conicet.rol
Consejero de estudios  
dc.conicet.otorgante
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física