Artículo
Resolution of Algebraic Systems of Equations in the Variety of Cyclic Post Algebras
Fecha de publicación:
07/2011
Editorial:
Springer
Revista:
Studia Logica
ISSN:
0039-3215
e-ISSN:
1572-8730
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
There is a constructive method to define a structure of simple k-cyclic Post algebra of order p, Lp,k, on a given finite field F(pk), and conversely. There exists an interpretation Φ1 of the variety V(Lp,k) generated by Lp,k into the variety V(F(pk)) generated by F(pk) and an interpretation Φ2 of V(F(pk)) into V(Lp,k) such that Φ2Φ1(B) = B for every B ∈ V(Lp,k) and Φ1Φ2(R) = R for every R ∈ V(F(pk)). In this paper we show how we can solve an algebraic system of equations over an arbitrary cyclic Post algebra of order p, p prime, using the above interpretation, Gröbner bases and algorithms programmed in Maple.
Palabras clave:
Equivalence
,
Finite Fields
,
GrÖBner Bases
,
Post Algebras
,
Varieties
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Díaz Varela, José Patricio; López Martinolich, Blanca Fernanda; Resolution of Algebraic Systems of Equations in the Variety of Cyclic Post Algebras; Springer; Studia Logica; 98; 1; 7-2011; 307-330
Compartir
Altmétricas