Mostrar el registro sencillo del ítem

dc.contributor.author
Ferraty, Frédéric  
dc.contributor.author
Kudraszow, Nadia Laura  
dc.contributor.author
Vieu, Philippe  
dc.date.available
2019-07-16T19:23:50Z  
dc.date.issued
2012-06  
dc.identifier.citation
Ferraty, Frédéric; Kudraszow, Nadia Laura; Vieu, Philippe; Nonparametric estimation of a surrogate density function in infinite-dimensional spaces; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 24; 2; 6-2012; 447-464  
dc.identifier.issn
1048-5252  
dc.identifier.uri
http://hdl.handle.net/11336/79667  
dc.description.abstract
A density function is generally not well defined in functional data context, but we can define a surrogate of a probability density, also called pseudo-density, when the small ball probability can be approximated by the product of two independent functions, one depending only on the centre of the ball. The aim of this paper is to study two kernel methods for estimating a surrogate probability density for functional data. We present asymptotic properties of these estimators: the convergence in probability and their rates. Simulations are given, including a functional version of smoother bootstrap selection of the parameters of the estimate.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Functional Data  
dc.subject
K-Nearest Neighbour Method  
dc.subject
Kernel Estimators  
dc.subject
Small Ball Probability  
dc.subject
Smoother Bootstrap  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-07-04T18:15:31Z  
dc.identifier.eissn
1029-0311  
dc.journal.volume
24  
dc.journal.number
2  
dc.journal.pagination
447-464  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia  
dc.description.fil
Fil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia  
dc.journal.title
Journal Of Nonparametric Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/10485252.2012.671943  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10485252.2012.671943