Mostrar el registro sencillo del ítem
dc.contributor.author
Pirashvili, Teimuraz
dc.contributor.author
Redondo, Maria Julia
dc.date.available
2019-07-16T18:05:26Z
dc.date.issued
2008-04
dc.identifier.citation
Pirashvili, Teimuraz; Redondo, Maria Julia; Universal coefficient theorem in triangulated categories; Springer Verlag Berlín; Algebras and Representation Theory; 11; 2; 4-2008; 107-114
dc.identifier.issn
1386-923X
dc.identifier.uri
http://hdl.handle.net/11336/79648
dc.description.abstract
We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Abelian Category
dc.subject
Homology Theory
dc.subject
Triangulated Category
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Universal coefficient theorem in triangulated categories
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-07-12T17:36:05Z
dc.identifier.eissn
1572-9079
dc.journal.volume
11
dc.journal.number
2
dc.journal.pagination
107-114
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Pirashvili, Teimuraz. University of Leicester; Reino Unido
dc.description.fil
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
Algebras and Representation Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-007-9077-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10468-007-9077-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604412
Archivos asociados