Mostrar el registro sencillo del ítem

dc.contributor.author
Pirashvili, Teimuraz  
dc.contributor.author
Redondo, Maria Julia  
dc.date.available
2019-07-16T18:05:26Z  
dc.date.issued
2008-04  
dc.identifier.citation
Pirashvili, Teimuraz; Redondo, Maria Julia; Universal coefficient theorem in triangulated categories; Springer Verlag Berlín; Algebras and Representation Theory; 11; 2; 4-2008; 107-114  
dc.identifier.issn
1386-923X  
dc.identifier.uri
http://hdl.handle.net/11336/79648  
dc.description.abstract
We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Abelian Category  
dc.subject
Homology Theory  
dc.subject
Triangulated Category  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Universal coefficient theorem in triangulated categories  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-07-12T17:36:05Z  
dc.identifier.eissn
1572-9079  
dc.journal.volume
11  
dc.journal.number
2  
dc.journal.pagination
107-114  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Pirashvili, Teimuraz. University of Leicester; Reino Unido  
dc.description.fil
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Algebras and Representation Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-007-9077-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10468-007-9077-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604412