Mostrar el registro sencillo del ítem

dc.contributor.author
Guarracino, Luis  
dc.contributor.author
Rötting, Tobias  
dc.contributor.author
Carrera, Jesús  
dc.date.available
2019-07-04T18:08:24Z  
dc.date.issued
2014-03  
dc.identifier.citation
Guarracino, Luis; Rötting, Tobias; Carrera, Jesús; A fractal model to describe the evolution of multiphase flow properties during mineral dissolution; Elsevier; Advances in Water Resources; 67; 3-2014; 78-86  
dc.identifier.issn
0309-1708  
dc.identifier.uri
http://hdl.handle.net/11336/79148  
dc.description.abstract
Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIFFUSION  
dc.subject
DISSOLUTION  
dc.subject
FRACTAL MODEL  
dc.subject
MULTIPHASE FLOW  
dc.subject
PORE SIZE DISTRIBUTION  
dc.subject
REPRESENTATIVE ELEMENTARY VOLUME  
dc.subject
WATER RETENTION CURVE  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-14T18:37:31Z  
dc.journal.volume
67  
dc.journal.pagination
78-86  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Guarracino, Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Rötting, Tobias. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Carrera, Jesús. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España  
dc.journal.title
Advances in Water Resources  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.advwatres.2014.02.011  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0309170814000347