Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Relational databases as a massive information source for defeasible argumentation

Deagustini, Cristhian Ariel DavidIcon ; Fulladoza Dalibón, Santiago EmanuelIcon ; Gottifredi, SebastiánIcon ; Falappa, Marcelo AlejandroIcon ; Chesñevar, Carlos IvánIcon ; Simari, Guillermo RicardoIcon
Fecha de publicación: 10/2013
Editorial: Elsevier Science
Revista: Knowledge-Based Systems
ISSN: 0950-7051
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Argumentation provides a sophisticated yet powerful mechanism for the formalization of commonsense reasoning in knowledge-based systems, with application in many areas of Artificial Intelligence. Nowadays, most argumentation systems build their arguments on the basis of a single, fixed knowledge base, often under the form of a logic program as in Defeasible Logic Programming or in Assumption-Based Argumentation. Currently, adding new information to such programs requires a manual encoding, which is not feasible for many real-world environments which involve large amounts of data, usually conceptualized as relational databases. This paper presents a novel approach to compute arguments from premises obtained from relational databases, identifying several relevant aspects. In our setting, different databases can be updated by external, independent applications, leading to changes in the spectrum of available arguments. We present algorithms for integrating a database management system with an argument-based inference engine. Empirical results and running-time analysis associated with our approach show that it provides a powerful alternative for efficiently achieving massive argumentation, taking advantage of modern DBMS technologies. We contend that our proposal is significant for developing new architectures for knowledge-based applications, such as Decision Support Systems and Recommender Systems, using argumentation as the underlying inference model.
Palabras clave: Argument-Supporting Data Retrieval , Defeasible Argumentation , Knowledge-Based Systems , Massive Argumentation , Relational Databases
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.045Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/79056
URL: http://www.sciencedirect.com/science/article/pii/S0950705113002128
DOI: http://dx.doi.org/10.1016/j.knosys.2013.07.010
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Deagustini, Cristhian Ariel David; Fulladoza Dalibón, Santiago Emanuel; Gottifredi, Sebastián; Falappa, Marcelo Alejandro; Chesñevar, Carlos Iván; et al.; Relational databases as a massive information source for defeasible argumentation; Elsevier Science; Knowledge-Based Systems; 51; 10-2013; 93-109
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES