Show simple item record

dc.contributor.author Gonzalez Solveyra, Estefania
dc.contributor.author de la Llave, Ezequiel Pablo
dc.contributor.author Molinero, Valeria
dc.contributor.author Soler Illia, Galo Juan de Avila Arturo
dc.contributor.author Scherlis Perel, Damian Ariel
dc.date.available 2016-11-01T14:42:09Z
dc.date.issued 2013-01-16
dc.identifier.citation Gonzalez Solveyra, Estefania; de la Llave, Ezequiel Pablo; Molinero, Valeria; Soler Illia, Galo Juan de Avila Arturo; Scherlis Perel, Damian Ariel; Structure, Dynamics, and Phase Behavior of Water in TiO2 Nanopores; American Chemical Society; Journal Of Physical Chemistry C; 117; 16-1-2013; 3330-3342
dc.identifier.issn 1932-7447
dc.identifier.uri http://hdl.handle.net/11336/7886
dc.description.abstract Mesoporous titania is a highly studied material due to its energy and environment-related applications, which depend on its tailored surface and electronic properties. Understanding the behavior of water in titania pores is a central issue for practical purposes in photocatalysis, solar cells, bone implants, or optical sensors. In particular, the mechanisms of capillary condensation of water in titania mesopores and the organization and mobility of water as a function of pore filling fraction are not yet known. In this work, molecular dynamics simulations of water confined in TiO2-rutile pores of diameters 1.3, 2.8, and 5.1 nm were carried out at various water contents. Water density and diffusion coefficients were obtained as a function of the distance from the surface. The proximity to the interface affects density and diffusivity within a distance of around 10 Å from the walls, beyond which all properties tend to converge. The densities of the confined liquid in the 2.8 and the 5.1 nm pores decrease, respectively, 7% and 4% with respect to bulk water. This decrease causes the water translational mobility in the center of the 2.8 nm pore to be appreciably larger than in bulk. Capillary condensation takes place in equilibrium for a filling of 71% in the 2.8 nm pore and in conditions of high supersaturation in the 5.1 nm pore, at a filling of 65%. In the former case, the surface density increases uniformly with filling until condensation, whereas in the larger nanopore, a cluster of water molecules develops on a localized spot on the surface for fillings just below the transition. No phase transition is detected in the smaller pore. For all the systems studied, the first monolayer of water is strongly immobilized on the interface, thus reducing the accessible or effective diameter of the pore by around 0.6 nm. As a consequence, the behavior of water in these pores turns out to be comparable to its behavior in less hydrophilic pores of smaller size.
dc.format application/pdf
dc.language.iso eng
dc.publisher American Chemical Society
dc.rights info:eu-repo/semantics/restrictedAccess
dc.rights.uri https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject MESOPOROUS TITANIA
dc.subject CAPILLARY CONDENSATION
dc.subject WATER ADSORPTION
dc.subject SIMULATION
dc.subject.classification Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification Ciencias Químicas
dc.subject.classification CIENCIAS NATURALES Y EXACTAS
dc.title Structure, Dynamics, and Phase Behavior of Water in TiO2 Nanopores
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion
dc.date.updated 2016-10-26T21:21:08Z
dc.journal.volume 117
dc.journal.pagination 3330-3342
dc.journal.pais Estados Unidos
dc.journal.ciudad Washington
dc.description.fil Fil: Gonzalez Solveyra, Estefania. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil Fil: de la Llave, Ezequiel Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil Fil: Molinero, Valeria. University of Utah; Estados Unidos
dc.description.fil Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes; Argentina
dc.description.fil Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
dc.journal.title Journal Of Physical Chemistry C
dc.relation.alternativeid info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp307900q
dc.relation.alternativeid info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/dx.doi.org/10.1021/jp307900q


Archivos asociados

Icon
Blocked Acceso no disponible

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)