Mostrar el registro sencillo del ítem
dc.contributor.author
Côrtes, A.M.A.
dc.contributor.author
Coutinho, A.L.G.A.
dc.contributor.author
Dalcin, Lisandro Daniel
dc.contributor.author
Calo, V.M.
dc.date.available
2019-06-21T01:49:08Z
dc.date.issued
2015-11
dc.identifier.citation
Côrtes, A.M.A.; Coutinho, A.L.G.A.; Dalcin, Lisandro Daniel; Calo, V.M.; Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system; Elsevier B.V.; Journal of Computational Science; 11; 11-2015; 123-136
dc.identifier.issn
1877-7503
dc.identifier.uri
http://hdl.handle.net/11336/78615
dc.description.abstract
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier B.V.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Block-Diagonal Preconditioner
dc.subject
Divergence-Conforming B-Spline Spaces
dc.subject
Isogeometric Analysis
dc.subject
Krylov Subspace Method
dc.subject
Stokes Problem
dc.title
Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-06-19T16:54:02Z
dc.journal.volume
11
dc.journal.pagination
123-136
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Côrtes, A.M.A.. Universidade Federal do Rio de Janeiro; Brasil
dc.description.fil
Fil: Coutinho, A.L.G.A.. Universidade Federal do Rio de Janeiro; Brasil
dc.description.fil
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Calo, V.M.. King Abdullah University Of Science And Technology; Arabia Saudita
dc.journal.title
Journal of Computational Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jocs.2015.01.005
Archivos asociados