Mostrar el registro sencillo del ítem

dc.contributor.author
Côrtes, A.M.A.  
dc.contributor.author
Coutinho, A.L.G.A.  
dc.contributor.author
Dalcin, Lisandro Daniel  
dc.contributor.author
Calo, V.M.  
dc.date.available
2019-06-21T01:49:08Z  
dc.date.issued
2015-11  
dc.identifier.citation
Côrtes, A.M.A.; Coutinho, A.L.G.A.; Dalcin, Lisandro Daniel; Calo, V.M.; Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system; Elsevier B.V.; Journal of Computational Science; 11; 11-2015; 123-136  
dc.identifier.issn
1877-7503  
dc.identifier.uri
http://hdl.handle.net/11336/78615  
dc.description.abstract
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier B.V.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Block-Diagonal Preconditioner  
dc.subject
Divergence-Conforming B-Spline Spaces  
dc.subject
Isogeometric Analysis  
dc.subject
Krylov Subspace Method  
dc.subject
Stokes Problem  
dc.title
Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-19T16:54:02Z  
dc.journal.volume
11  
dc.journal.pagination
123-136  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Côrtes, A.M.A.. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Coutinho, A.L.G.A.. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Calo, V.M.. King Abdullah University Of Science And Technology; Arabia Saudita  
dc.journal.title
Journal of Computational Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jocs.2015.01.005