Mostrar el registro sencillo del ítem

dc.contributor.author
Sonneville, V.  
dc.contributor.author
Cardona, Alberto  
dc.contributor.author
Brüls, O.  
dc.date.available
2019-06-21T00:53:06Z  
dc.date.issued
2014-03  
dc.identifier.citation
Sonneville, V.; Cardona, Alberto; Brüls, O.; Geometrically exact beam finite element formulated on the special Euclidean group SE(3); Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 268; 3-2014; 451-474  
dc.identifier.issn
0045-7825  
dc.identifier.uri
http://hdl.handle.net/11336/78602  
dc.description.abstract
This paper describes a dynamic formulation of a straight beam finite element in the setting of the special Euclidean group SE(3). First, the static and dynamic equilibrium equations are derived in this framework from variational principles. Then, a non-linear interpolation formula using the exponential map is introduced. It is shown that this framework leads to a natural coupling in the interpolation of the position and rotation variables. Next, the discretized internal and inertia forces are developed. The semi-discrete equations of motion take the form of a second-order ordinary differential equation on a Lie group, which is solved using a Lie group time integration scheme. It is remarkable that no parameterization of the nodal variables needs to be introduced and that the proposed Lie group framework leads to a compact and easy-to-implement formulation. Some important numerical and theoretical aspects leading to a computationally efficient strategy are highlighted and discussed. For instance, the formulation leads to invariant tangent stiffness and mass matrices under rigid body motions and a locking free element. The proposed formulation is successfully tested in several numerical static and dynamic examples.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Sa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dynamic Beam  
dc.subject
Finite Element  
dc.subject
Lie Group  
dc.subject
Special Euclidean Group  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Geometrically exact beam finite element formulated on the special Euclidean group SE(3)  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-19T16:52:32Z  
dc.journal.volume
268  
dc.journal.pagination
451-474  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Sonneville, V.. Université de Liège; Bélgica  
dc.description.fil
Fil: Cardona, Alberto. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Brüls, O.. Université de Liège; Bélgica  
dc.journal.title
Computer Methods in Applied Mechanics and Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cma.2013.10.008