Mostrar el registro sencillo del ítem
dc.contributor.author
Ferraro, Sebastián José
dc.contributor.author
Jiménez Alburquerque, Fernando
dc.contributor.author
Martin de Diego, David
dc.date.available
2019-06-11T18:19:55Z
dc.date.issued
2015-04-25
dc.identifier.citation
Ferraro, Sebastián José; Jiménez Alburquerque, Fernando; Martin de Diego, David; New developments on the geometric nonholonomic integrator; IOP Publishing; Nonlinearity; 28; 4; 25-4-2015; 871-900
dc.identifier.issn
0951-7715
dc.identifier.uri
http://hdl.handle.net/11336/77966
dc.description.abstract
In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28; Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed to account for some of the special geometric structures associated to a nonholonomic motion, like preservation of energy, preservation of constraints or the nonholonomic momentum equation. First, we study the GNI versions of the symplectic-Euler methods, paying special attention to their convergence behaviour. Then, we construct an extension of the GNI in the case of affine constraints. Finally, we generalize the proposed method to nonholonomic reduced systems, an important subclass of examples in nonholonomic dynamics. We illustrate the behaviour of the proposed method with the example of the inhomogeneous sphere rolling without slipping on a table.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
37j60
dc.subject
37m15
dc.subject
37n05
dc.subject
65p10
dc.subject
70-08
dc.subject
Affine Constraints Mathematics Subject Classification: 70f25
dc.subject
Discrete Variational Calculus
dc.subject
Geometric Nonholonomic Integrator
dc.subject
Nonholonomic Mechanics
dc.subject
Reduction by Symmetries
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
New developments on the geometric nonholonomic integrator
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-06-10T14:30:18Z
dc.journal.volume
28
dc.journal.number
4
dc.journal.pagination
871-900
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Jiménez Alburquerque, Fernando. Universitat Technical Zu Munich; Alemania
dc.description.fil
Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España
dc.journal.title
Nonlinearity
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0951-7715/28/4/871/meta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/0951-7715/28/4/871
Archivos asociados