Mostrar el registro sencillo del ítem

dc.contributor.author
Ferraro, Sebastián José  
dc.contributor.author
Jiménez Alburquerque, Fernando  
dc.contributor.author
Martin de Diego, David  
dc.date.available
2019-06-11T18:19:55Z  
dc.date.issued
2015-04-25  
dc.identifier.citation
Ferraro, Sebastián José; Jiménez Alburquerque, Fernando; Martin de Diego, David; New developments on the geometric nonholonomic integrator; IOP Publishing; Nonlinearity; 28; 4; 25-4-2015; 871-900  
dc.identifier.issn
0951-7715  
dc.identifier.uri
http://hdl.handle.net/11336/77966  
dc.description.abstract
In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28; Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed to account for some of the special geometric structures associated to a nonholonomic motion, like preservation of energy, preservation of constraints or the nonholonomic momentum equation. First, we study the GNI versions of the symplectic-Euler methods, paying special attention to their convergence behaviour. Then, we construct an extension of the GNI in the case of affine constraints. Finally, we generalize the proposed method to nonholonomic reduced systems, an important subclass of examples in nonholonomic dynamics. We illustrate the behaviour of the proposed method with the example of the inhomogeneous sphere rolling without slipping on a table.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
37j60  
dc.subject
37m15  
dc.subject
37n05  
dc.subject
65p10  
dc.subject
70-08  
dc.subject
Affine Constraints Mathematics Subject Classification: 70f25  
dc.subject
Discrete Variational Calculus  
dc.subject
Geometric Nonholonomic Integrator  
dc.subject
Nonholonomic Mechanics  
dc.subject
Reduction by Symmetries  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
New developments on the geometric nonholonomic integrator  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-10T14:30:18Z  
dc.journal.volume
28  
dc.journal.number
4  
dc.journal.pagination
871-900  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Jiménez Alburquerque, Fernando. Universitat Technical Zu Munich; Alemania  
dc.description.fil
Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España  
dc.journal.title
Nonlinearity  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0951-7715/28/4/871/meta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/0951-7715/28/4/871