Artículo
An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems
Fecha de publicación:
06/2014
Editorial:
American Institute of Mathematical Sciences
Revista:
Journal of Geometric Mechanics
ISSN:
1941-4889
e-ISSN:
1941-4897
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper extends the Gotay-Nester and the Dirac theories of constrained systems in order to deal with Dirac dynamical systems in the integrable case. Integrable Dirac dynamical systems are viewed as constrained systems where the constraint submanifolds are foliated. The cases considered usually in the literature correspond to a trivial foliation, with only one leaf. A Constraint Algorithm for Dirac dynamical systems (CAD), which extends the Gotay-Nester algorithm, is developed. Evolution equations are written using a Dirac bracket adapted to the foliations and an adapted total energy. The interesting example of LC circuits is developed in detail. The paper emphasizes the point of view that Dirac and Gotay-Nester theories are, in a certain sense, dual and that using a combination of results from both theories may have advantages in dealing with a given example, rather than using systematically one or the other.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Cendra, Hernan; Etchechoury, María del Rosario; Ferraro, Sebastián José; An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems; American Institute of Mathematical Sciences; Journal of Geometric Mechanics; 6; 2; 6-2014; 167-236
Compartir
Altmétricas