Mostrar el registro sencillo del ítem

dc.contributor.author
Carcione, Jose M.  
dc.contributor.author
Gurevich, Boris  
dc.contributor.author
Santos, Juan Enrique  
dc.contributor.author
Picotti, Stefano  
dc.date.available
2019-06-10T18:40:01Z  
dc.date.issued
2013-11  
dc.identifier.citation
Carcione, Jose M.; Gurevich, Boris; Santos, Juan Enrique; Picotti, Stefano; Angular and Frequency-Dependent Wave Velocity and Attenuation in Fractured Porous Media; Birkhauser Verlag Ag; Pure And Applied Geophysics; 170; 11; 11-2013; 1673-1683  
dc.identifier.issn
0033-4553  
dc.identifier.uri
http://hdl.handle.net/11336/77862  
dc.description.abstract
Wave-induced fluid flow generates a dominant attenuation mechanism in porous media. It consists of energy loss due to P-wave conversion to Biot (diffusive) modes at mesoscopic-scale inhomogeneities. Fractured poroelastic media show significant attenuation and velocity dispersion due to this mechanism. The theory has first been developed for the symmetry axis of the equivalent transversely isotropic (TI) medium corresponding to a poroelastic medium containing planar fractures. In this work, we consider the theory for all propagation angles by obtaining the five complex and frequency-dependent stiffnesses of the equivalent TI medium as a function of frequency. We assume that the flow direction is perpendicular to the layering plane and is independent of the loading direction. As a consequence, the behaviour of the medium can be described by a single relaxation function. We first consider the limiting case of an open (highly permeable) fracture of negligible thickness. We then compute the associated wave velocities and quality factors as a function of the propagation direction (phase and ray angles) and frequency. The location of the relaxation peak depends on the distance between fractures (the mesoscopic distance), viscosity, permeability and fractures compliances. The flow induced by wave propagation affects the quasi-shear (qS) wave with levels of attenuation similar to those of the quasi-compressional (qP) wave. On the other hand, a general fracture can be modeled as a sequence of poroelastic layers, where one of the layers is very thin. Modeling fractures of different thickness filled with CO2 embedded in a background medium saturated with a stiffer fluid also shows considerable attenuation and velocity dispersion. If the fracture and background frames are the same, the equivalent medium is isotropic, but strong wave anisotropy occurs in the case of a frameless and highly permeable fracture material, for instance a suspension of solid particles in the fluid. © 2013 Springer Basel.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Anisotropy  
dc.subject
Attenuation  
dc.subject
Boundary Conditions  
dc.subject
Fractures  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Angular and Frequency-Dependent Wave Velocity and Attenuation in Fractured Porous Media  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-07T16:10:27Z  
dc.journal.volume
170  
dc.journal.number
11  
dc.journal.pagination
1673-1683  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia  
dc.description.fil
Fil: Gurevich, Boris. Curtin University; Australia. CSIRO Exploration and Mining; Australia  
dc.description.fil
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Purdue University; Estados Unidos  
dc.description.fil
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia  
dc.journal.title
Pure And Applied Geophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00024-012-0636-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00024-012-0636-8