Mostrar el registro sencillo del ítem

dc.contributor.author
Curto Sillamoni, Ignacio José  
dc.contributor.author
Idiart, Martín Ignacio  
dc.date.available
2019-06-04T20:12:33Z  
dc.date.issued
2015-11  
dc.identifier.citation
Curto Sillamoni, Ignacio José; Idiart, Martín Ignacio; A model problem concerning ionic transport in microstructured solid electrolytes; Springer; Continuum Mechanics And Thermodynamics; 27; 6; 11-2015; 941-957  
dc.identifier.issn
0935-1175  
dc.identifier.uri
http://hdl.handle.net/11336/77600  
dc.description.abstract
We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Diffusion  
dc.subject
Heterogeneous Solids  
dc.subject
Interphases  
dc.subject
Migration  
dc.subject
Periodic Homogenization  
dc.subject.classification
Recubrimientos y Películas  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A model problem concerning ionic transport in microstructured solid electrolytes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-05-23T19:02:01Z  
dc.identifier.eissn
1432-0959  
dc.journal.volume
27  
dc.journal.number
6  
dc.journal.pagination
941-957  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Curto Sillamoni, Ignacio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina  
dc.description.fil
Fil: Idiart, Martín Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina  
dc.journal.title
Continuum Mechanics And Thermodynamics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00161-014-0391-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00161-014-0391-4